In our previous article we saw three classic Database Modelization Anti-Patterns. The article also contains a
reference to a Primary Key section of my book The Art of PostgresQL, so it’s only fair that I would now publish
said Primary Key section!

So in this article, we dive into Primary Keys as being a cornerstone of database normalization. It’s so important
to get Primary Keys right that you would think everybody knows how to do it, and yet, most of the primary key
constraints I’ve seen used in database design are actually not primary keys at all.

Table of Contents

e Normal Forms
e Primary Keys
o Surrogate Keys

e Conclusion

Before we can get into the details of Primary Keys themselves, let’s do a quick review of Normal Forms and
why they are interesting to us when we design a database model.

Normal Forms

There are several levels of normalization and the web site dbnormalization.comoffers a practical guide to them.
In this quick introduction to database normalization, we include the definition of the normal forms:

o 1st Normal Form (/NF)

A table (relation) is in /NF' if:

1. There are no duplicated rows in the table.
2. Each cell is single-valued (no repeating groups or arrays).
3. Entries in a column (field) are of the same kind.

 2nd Normal Form (2NF)

A table is in 2NF if it is in /NF and if all non-key attributes are dependent on all of the key. Since a partial
dependency occurs when a non-key attribute is dependent on only a part of the composite key, the
definition of 2NF' is sometimes phrased as: “A table is in 2NF if it is in /NF and if it has no partial
dependencies.”

 3rd Normal Form (3NF)

A table is in 3NF if it is in 2NF and if it has no transitive dependencies.

» Boyce-Codd Normal Form (BCNF)

A table is in BCNF if it is in 3NF and if every determinant is a candidate key.
o 4th Normal Form (4NF)

A table is in 4NF if it is in BCNF and if it has no multi-valued dependencies.
 5th Normal Form (5NF)

A table is in SNF, also called “Projection-join Normal Form” (PJNF), if it is in 4NFand if every join
dependency in the table is a consequence of the candidate keys of the table.

o Domain-Key Normal Form (DKNF)

A table is in DKNF if every constraint on the table is a logical consequence of the definition of keys and
domains.

What all of this say is that if you want to be able to process data in your database, using the relational model and
SQL as your main tooling, then it’s best not to make a total mess of the information and keep it logically
structured.

In practice database models often reach for BCNF or 4NF; going all the way to the DKNF design is only seen in
specific cases.

Primary Keys
Primary keys are a database constraint allowing us to implement the first and second normal forms. The first rule
to follow to reach first normal form says “There are no duplicated rows in the table”.
A primary key ensures two things:
« The attributes that are part of the primary key constraint definition are not allowed to be null.

 The attributes that are part of the primary key are unique in the table’s content.

To ensure that there is no duplicated row, we need the two guarantees. Comparing nu// values in SQL is a
complex matter — read Jeff Davis’ What is the deal with NULLs? to convince yourself, and rather than argue if
the no-duplicate rule applies to null = null (which is null) or to null is not null (which is false), a primary
key constraint disallow null values entirely.

Surrogate Keys

The reason why we have primary key is to avoid duplicate entries in the data set. As soon as a primary key is
defined on an automatically generated column, which is arguably not really part of the data set, then we open the
gates for violation of the first normal form.

As an example of that, we’re going to model the publication of articles in a newspaper, where each article
belongs to a single category. Here’s a first version of our main article table definition:

create table sandbox.article

(
id bigserial primary key,
category integer references sandbox.category(id),
pubdate timestamptz,
title text not null,

content text

)5

This model isn’t even compliant with /NF.

insert into sandbox.article (category, pubdate, title)
values (2, now(), 'Hot from the Press'),
(2, now(), 'Hot from the Press')

returning *;

PostgreSQL is happy to insert duplicate entries here:

—[RECORD 1]

id | 1001

category | 2

pubdate | 2017-08-30 18:09:46.997924+02
title | Hot from the Press

content | H

=[RECORD 2]

id | 1002

category | 2

pubdate | 2017-08-30 18:09:46.997924+02
title | Hot from the Press

content | H

INSERT 0 2

Of course, it’s possible to argue that those entries are not duplicates: they each have their own id value, which is
different — and it is an artificial value derived automatically for us by the system.

Actually, we now have to deal with two article entries in our publication system with the same category
(category 2 is news), the same title, and the same publication date. I don’t suppose this is an acceptable situation
for the business rules.

In term of database modeling, the artificially generated key is named a surrogate keybecause it is a substitute for
a natural key. A natural key would allow preventing duplicate entries in our data set.

We can fix our schema to prevent duplicate entries:

create table sandbox.article

(

category integer references sandbox.category(id),

pubdate timestamptz,

title text not null,

content text,

primary key(category, title);
)s

Now, you can share the same article’s title in different categories, but you can only publish with a title once in
the whole history of our publication system. Given this alternative design, we allow publications with the same
title at different publication dates. It might be needed, after all, as we know that history often repeats itself.

create table sandboxpk.article

(

category integer references sandbox.category(id),
pubdate timestamptz,
title text not null,

content text,

primary key(category, pubdate, title)
)5

Say we go with the solution that allows reusing the same title at a later date. We now have to change the model
of our comment table, which references the sandbox.articletable:

create table sandboxpk.comment

(

a_category integer not null,

a_pubdate timestamptz not null,

a title text not null.

J— - - - - P4

pubdate timestamptz,

content text,

primary key(a_category, a pubdate, a_title, pubdate, cor

foreign key(a_category, a_pubdate, a_title)

references sandboxpk.article(category, pubdate, title)

)5

As you can see each entry in the comment table must have enough information to be able to reference a single
entry in the article table, with a guarantee that there are no duplicates.

We then have quite a big table for the data we want to manage in there. So there’s yet another solution to
this surrogate key approach, a trade-off where you have the generated summary key benefits and still the natural
primary key guarantees needed for the /NF:

create table sandboxpk.article
(
id bigserial primary key,
category integer not null references sandbox.cate
pubdate timestamptz not null,
title text not null,

content text,

unique(category, pubdate, title)
)5

Now the category, pubdate and title have a not null constraint and a unigue constraint, which is the same level of
guarantee as when declaring them a primary key. So we both have a surrogate key that’s easy to reference from
other tables in our model, and also a strong /NF' guarantee about our data set.

Conclusion

This article is an extract from my book The Art of PostgresQL where we
dive into more details and examples around database modeling in
Chapter 6. Before that you can read whole chapters about how to be
proficient at advanced SQL so that it’s easier to make the right choices
when designing a database model. After all, an important trade-off in the

database design is that we’re able to write the queries we need to The Art of
: 1 PostgreSQL

implement and support users workflows. Ne)(®

After that, Chapter 7 is titled “Data Manipulation and Concurrency
Control” and deals with concurrent accesses to your data, which is the
most important aspect of a relational database management system!

