
CO
NC
EP
T

String Functions (T-SQL)

 ASCII (character) : Returns the ASCII code value of the leftmost character of character
 CHAR (int) : Converts the integer ASCII code int to a character
 CHARINDEX (search, expression, [start]) : Returns starting position (int) of first occurrence of the string search

within table or string expression starting from position start
 DIFFERENCE (expression1, expression2) : Returns the difference between the SOUNDEX values of the two

character expressions as an integer
 LEFT (expression, int): Returns part of character string expression starting at int characters from the left.
 LEN (expression) : Returns the number of characters of the string expression, excluding trailing blanks.
 LOWER (expression) : Returns character expression after converting uppercase string to lowercase
 LTRIM (expression) : Returns a character string after removing all leading blanks.
 NCHAR (int) : Returns the Unicode character with the given integer code.
 PATINDEX ('%pattern%', expression) : Returns starting position of the first occurrence of a pattern in a specified

expression, or zeros if the pattern is not found, on all valid text and character data types.
 REPLACE (expression1,expression2,expression3) : Replaces all occurrences of the second given string

expression in the first string expression with a third expression.
 QUOTENAME (character_string[, quote_character]) : Returns a Unicode string with the delimiters added to make

the input string a valid Microsoft® SQL Server™ delimited identifier.
 REPLICATE (expression, int) : Repeats a character expression a specified number of times
 REVERSE (expression) : Returns the reverse of a character expression.
 RIGHT (expression, int): Returns part of character string expression starting at int characters from the right.
 RTRIM (expression) : Returns a character string after removing all trailing blanks.
 SOUNDEX (expression) : Returns a four-character (SOUNDEX) code.
 SPACE (int) : Returns a string of int spaces.
 STR (float_expression[, length[, decimal]]) : Returns character data converted from numeric data.
 STUFF (expression1, start, length, expression2) : Deletes a specified length (length) of characters from

expression1 and inserts another set (expression2) at a specified starting point (start) of expression1.
 SUBSTRING (expression, start, length) : Returns part of character, binary, text expression or image expression

starting from position start with length length
 UNICODE (char) : Returns the Unicode int value for the first character of char.
 UPPER (expression) : Returns a character expression after converting lowercase string to uppercase.

Date and Time functions (T-SQL)
 DATEADD (datepart , number, date): Returns a new datetime value based on adding an

interval to the specified date.
 DATEDIFF (datepart , number, date): Returns the number of date and time boundaries

crossed between two specified dates.
 DATENAME (datepart , date): Returns a character string representing the specified datepart

of the specified date.
 DATEPART (datepart , date): Returns an integer that represents the specified datepart of the

specified date.
 DAY (date): Returns an integer representing the day datepart of the specified date.
 GETDATE : Returns the current system date and time.
 MONTH (date): Returns an integer that represents the month part of a specified date.
 YEAR (date): Returns an integer that represents the year part of a specified date.

SQL Server developers factsheet

Mathematical Functions (T-SQL)
 ABS (Expression): Returns the absolute (positive) value of a numeric expression.
 ACOS (Expression): Returns the angle, in radians, whose cosine is the specified float

expression; also called arccosine.
 ASIN (Expression): Returns the angle, in radians, whose sine is the specified float

expression. This is also called arcsine.
 ATAN (Expression): Returns the angle in radians whose tangent is a specified float

expression. This is also called arctangent.
 ATN2 (Expression): Returns the angle, in radians, between the positive x-axis and the ray

from the origin to the point (y, x), where x and y are the values of the specified float
expressions.

 CEILING(Expression): Returns the smallest integer greater than, or equal to, the specified
numeric expression.

 COS (Expression): Returns the trigonometric cosine of the specified angle, in radians.
 COT (Expression): Returns the trigonometric cotangent of the specified angle, in radians.
 DEGREES (Expression): Returns the corresponding angle in degrees for an angle specified

in radians.
 EXP (Expression): Returns the exponential value of the specified float expression.
 FLOOR (Expression): Returns the largest integer less than or equal to the specified numeric

expression.
 LOG (Expression): Returns the natural logarithm of the specified float expression.
 LOG10 (Expression): Returns the base-10 logarithm of the specified float expression.
 PI : Returns the constant value of PI.
 POWER (Expression, y): Returns the value of the specified expression to the specified

power.
 RADIANS (Expression): Returns radians of the numeric expression, in degrees.
 RAND : Returns a random float value from 0 through 1.
 ROUND (numeric_expression ,length [,function]): Returns a numeric value, rounded to the

specified length or precision.
 SIGN (Expression): Returns the positive (+1), zero (0), or negative (-1) sign of the specified

expression.
 SIN (Expression): Returns the trigonometric sine of the specified angle, in radians, and in an

approximate numeric, float, expression.
 SQRT (Expression): Returns the square root of the specified float value.
 SQUARE (Expression): Returns the square of the specified float value.
 TAN (Expression): Returns the tangent of the input expression.

Dateparts

Datepart Abbreviations

year
quarter
month
dayofyear
day
week
weekday
hour
minute
second
millisecond

yy, yyyy
qq, q
mm, m
dy, y
dd, d
wk, ww
dd
hh
mi, n
ss, s
ms

Cursor Functions (T-SQL)

 @@CURSOR_ROWS
Returns the number of qualifying rows currently
in the last cursor opened on the connection.

 @@FETCH_STATUS
Returns the status of the last cursor FETCH
statement issued against any cursor currently
opened by the connection.

 CURSOR_STATUS
A scalar function that allows the caller of a
stored procedure to determine whether or not
the procedure has returned a cursor and result
set for a given parameter.

System Functions (T-SQL)

 @@ERROR : Returns the error number for the last Transact-SQL statement executed.
 @@IDENTITY : returns the last-inserted identity value.
 @@ROWCOUNT : Returns the number of rows affected by the last statement.
 @@TRANCOUNT : Returns the number of active transactions for the current connection.
 APP_NAME : Returns the application name for the current session if set by the application.
 CASE : Evaluates a list of conditions and returns one of multiple possible result expressions.
 CAST (expression AS data_type) / CONVERT : Converts an expression of one data type to another.
 COALESCE (expression [,...n]) : Returns the first nonnull expression among its arguments.
 CURRENT_TIMESTAMP : Returns the current date and time. ANSI SQL equivalent to GETDATE.
 CURRENT_USER : Returns the name of the current user. Equivalent to USER_NAME().
 DATALENGTH (Expression) : Returns the number of bytes used to represent any expression.
 FORMATMESSAGE (msg_number , [param_value [,...n]]) : Constructs a message from an existing message in

sys.messages and returns the formatted message for further processing.
 GETANSINULL : Returns the default nullability for the database for this session.
 HOST_ID : Returns the workstation identification number.
 HOST_NAME : Returns the workstation name.
 IDENT_INCR : Returns the increment value (returned as numeric (@@MAXPRECISION,0)) specified during the

creation of an identity column in a table or view that has an identity column.
 IDENT_SEED : Returns the seed value (returned as numeric(@@MAXPRECISION,0)) that was specified when an

identity column in a table or a view that has an identity column was created.
 IDENTITY : to insert an identity column into a new table
 ISDATE (expression): Determines whether an input expression is a valid date.
 ISNULL (expression , replacement_value) : Replaces NULL with the specified value.
 ISNUMERIC (expression): Determines whether an expression is a valid numeric type.
 NEWID : Creates a unique value of type uniqueidentifier.
 NULLIF (expression , expression) : Returns a null value if the two specified expressions are equal.
 PARSENAME ('object_name',object_piece) : Returns the specified part of an object name. Parts of an object that

can be retrieved are the object name, owner name, database name, and server name.
 PERMISSIONS ([objectid [,'column']]): Returns a value containing a bitmap that indicates the statement, object, or

column permissions of the current user.
 SESSION_USER : returns the user name of the current context in the current database.
 STATS_DATE : Returns the date that the statistics for the specified index were last updated.
 SYSTEM_USER : Allows a system-supplied value for the current login to be inserted into a table when no default

value is specified.
 USER_NAME ([ID]): Returns a database user name from a specified identification number.

Data types

type Size Range (from/to)

Exact numerics

bigint 8 bytes -9,223,372,036,854,775,808
9,223,372,036,854,775,807

bit 1 bit 0 to 1

decimal -10^38 +1 to 10^38 –1

int 4 bytes -2,147,483,648 to
2,147,483,647

money 8 bytes -922,337,203,685,477.5808
+922,337,203,685,477.5807

numeric 19 bytes -10^38 +1 to 10^38 –1

smallint 2 bytes -32,768 to 32,767

smallmoney 4 bytes -214,748.3648 to
+214,748.3647

tinyint 1 byte 0 to 255

Approximate numerics

float 8 bytes -1.79E + 308 to
1.79E + 308

real 4 bytes -3.40E + 38 to
3.40E + 38

Dates

datetime 8 bytes Jan 1, 1753 to Dec 31, 9999

smalldatetime 4 bytes Jan 1, 1900 to Jun 6, 2079

Type / performance Characteristics

Character Strings

char Fixed-length non-Unicode character.
Max 8000 characters

varchar Variable-length non-Unicode data.
Max 8000 characters

varchar(max) Variable-length non-Unicode data
Max 2^31 characters (SQL 2005)

text Variable-length non-Unicode data.
Max 2,147,483,647 characters

Unicode Character Strings

nchar Fixed-length Unicode data.
Max 4000 characters

nvarchar Variable-length Unicode data.
Max 4000 characters

nvarchar(max) Variable-length Unicode data
Max 2^30 characters (SQL 2005)

ntext Variable-length Unicode data.
Max 1,073,741,823 characters

Binary Strings

binary Fixed-length binary data.
Max 8000 bytes

varbinary Variable-length binary data.
Max 8000 bytes

varbinary(max) Variable-length binary data.
Max 2^31 bytes (SQL 2005)

image Variable-length binary data.
Max 2,147,483,647 bytes.

Other types

cursor A data type for variables or stored
procedure OUTPUT parameters that
contain a reference to a cursor.

sql_variant A data type that stores values of
various SQL Server 2005-supported
data types, except text, ntext, image,
timestamp, and sql_variant.

table Is a special data type that can be
used to store a result set for
processing at a later time.

timestamp Is a data type that exposes
automatically generated, unique
binary numbers within a database.

by Xander Zelders, http://www.dotnet4all.com

http://www.dotnet4all.com
http://www.dotnet4all.com

CO
NC
EP
T

SELECT (T-SQL)
The full syntax of the SELECT statement is complex, but the
main clauses can be summarized as:

SELECT [DISTINCT] [{TOP int | TOP int PERCENT}]
columns
[INTO new_table]
FROM table_source
[[INNER |{{ LEFT | RIGHT | FULL }[OUTER]}] JOIN
table_source2 ON table_source.primairy_key =
table_source2.foreign_key][,...n]
[WHERE search_condition]
[GROUP BY group_by_expression]
[HAVING search_condition]
[ORDER BY order_expression [ASC | DESC]]

 DISTINCT : Specifies that only unique rows can appear in
the result set. Null values are considered equal for the
purposes of the DISTINCT keyword

 TOP n [PERCENT] : Specifies that the first n rows are to
be output from the query result set. If PERCENT is also
specified, the first n percent are output.

 INTO new_table: Creates a new table and inserts the
resulting rows from the query into it

 GROUP BY : Specifies the groups into which output rows
are to be placed and, if aggregate functions are included in
the SELECT clause <select list>, calculates a summary
value for each group.

 HAVING : Specifies a search condition for a group or an
aggregate

UPDATE (T-SQL)
The full syntax of the UPDATE statement is complex, but the
main clauses can be summarized as:

UPDATE table_name
SET column_name = {expression | DEFAULT | NULL}
[,...n]
[WHERE <search_condition>]

DELETE (T-SQL)
The full syntax of the DELETE statement is complex, but the
main clauses can be summarized as:

DELETE [FROM] table_name
[WHERE <search_condition>]

INSERT (T-SQL)
INSERT adds a new row to an existing table or a view.
The full syntax of the INSERT statement is complex, but the
main clauses can be summarized as:

INSERT [INTO] table_name
[(column_list)]
VALUES ({ DEFAULT | NULL | expression }[,...n])

CREATE TABLE (T-SQL)
Creates a new table. The full syntax is complex, but the main
clauses can be summarized as:

CREATE TABLE
[{database_name.[owner].| owner.}] table_name
({<column_definition> | column_name AS
computed_column_expression | <table_constraint>}
[,...n])

ALTER TABLE (T-SQL)
Modifies a table definition by altering, adding or dropping columns and
constraints, or by disabling or enabling constraints and triggers. The full syntax
is complex, but the main clauses can be summarized as:

ALTER TABLE table
{[ALTER COLUMN column_name {new_data_type
 [(precision[, scale])][NULL | NOT NULL]

| {ADD | DROP} ROWGUIDCOL}] | ADD
{[<column_definition>]| column_name AS
computed_column_expression}[,...n]

| [WITH CHECK | WITH NOCHECK] ADD
{ <table_constraint> }[,...n] | DROP {[CONSTRAINT]
constraint_name

 | COLUMN column}[,...n] | {CHECK | NOCHECK}
CONSTRAINT
 {ALL | constraint_name[,...n]} | {ENABLE | DISABLE}
TRIGGER {ALL | trigger_name[,...n]}}

Creating / Altering other objects
Stored procedures:
CREATE PROCEDURE <name> AS <sql_statement>
ALTER PROCEDURE <name> AS <sql_statement>
DROP PROCEDURE <name>

Indexes:
CREATE INDEX <name> ON <table> (<column>)
CREATE UNIQUE CLUSTERED INDEX <name> ON <table>.<column>
DROP INDEX <table>.<name>

Views:
CREATE VIEW <name> [(<Column1>,…)] AS <SELECT_statement>
ALTER VIEW <name> [(<Column1>,…)] AS <SELECT_statement>
DROP VIEW <name>

Triggers:
CREATE TRIGGER <name> ON <table> FOR INSERT, UPDATE,

DELETE AS <sql_statement>
ALTER TRIGGER <name> ON <table> FOR UPDATE, DELETE AS

<sql_statement>
DROP TRIGGER <name>

Functions:
CREATE FUNCTION <name> RETURNS <data_type> AS

RETURN <sql_expression>
CREATE FUNCTION <name> RETURNS <data_type> AS BEGIN
 <sql_statement> RETURN <sql_expression> END
ALTER FUNCTION <name> RETURNS <data_type> AS

RETURN <sql_expression>
DROP FUNCTION <name>

Checklist for fast queries

 Avoid non-sargable WHERE-clauses. If possible rewrite them to sargable
ones

 In the WHERE-clause use the least likely true AND expression first
 Avoid using OR in the WHERE-clause if not all colums have an index
 Avoid using UNION if UNION ALL also does the trick
 Avoid using UNION of two subsets from the same table. Instead use OR in

the WHERE-clause
 Avoid using SELECT * FROM when only a few columns are needed. Try

to specify each column
 Avoid using COUNT(*) to check the existence of a record. Instead use

EXIST
 Always try to use a WHERE-clause in your query to narrow the results
 Try to use the best performing operator as possible
 Avoid using NOT IN. Instead use EXIST, NOT EXIST, IN or LEFT OUTER

JOIN with a check for a NULL condition
 Avoid using IN when EXISTS is also possible
 Avoid using IN when BETWEEN is also possible
 In case using IN try to order the list of values so that the most frequently

found values are placed first
 Avoid using SUBSTRING in the WHERE-clause. If possible use LIKE

instead
 Sometimes consider rewriting a query using a OR to multiple queries

combined with a UNION ALL
 Don't use ORDER BY if you don't really need it
 Keep the width and/or number of sorted columns to the minimum
 Keep the number of rows to be sorted to a minimum
 When sorting a specific column often conside making that column a

clustered index
 In case of using HAVING try to minimize the amount of rows using a

WHERE clause
 In case using LIKE on CHAR of VARCHAR colums quite often consider

using the full-text search option
 In case using GROUP BY without an aggregate function try using

DISTINCT instead
 Avoid using variables in a WHERE clause in case the query is located in a

batch-file

Checklist for creating indexes

 Create indexes on the highly selective colums that are used in the
WHERE-clause

 Create indexes on all columns that are used in the WHERE clause in case
OR is used

 Create at least a clustered index on every table. Generally use the column
that monotonically increases

 Create indexes columns that are frequently accessed by WHERE,
ORDER BY, GROUP BY, TOP and DISTINCT

 Only add indexes that will be used frquently
 Avoid adding too much indexes on dynamic tables (subject to many

INSERTs, UPDATEs or DELETEs)
 For static tables use a FILLFACTOR and PAD_INDEX of 100. For

dynamic tables use a lower FILLFACTOR
 To identify additional indexes use the SS Profiler Create Trace Wizard and

trace "Identify Scans of Large Tables"
 Avoid adding indexes twice

Sargability
SQL Server only uses indexes for colums used in sargable
expressions. Green = fastest expression.

Sargable Non-sargable
= IS NULL
> <>
< !=
>= !>
<= !<
EXIST NOT
IS NOT EXIST
IN NOT IN
BETWEEN NOT LIKE
LIKE 'abc%' LIKE '%abc'

LIKE '%abc%'
function on column
column1 = column1
column1 = column2

Execution Plan Icons (2005)

Arithmetic
Expression

Nonclustered
Index Scan

Assert Nonclustered
Index Seek

Bitmap Nonclustered
Index Spool

Bookmark
Lookup

Nonclustered
Index Update

Clustered
Index Delete

Online Index
Insert

Clustered
Index Insert

Parameter Table
Scan

Clustered
Index Scan Remote Delete

Clustered
Index Seek Remote Insert

Clustered
Index Update Remote Query

Collapse Remote Scan

Compute
Scalar Remote Update

Concatenatio
n RID Lookup

Constant
Scan

Row Count
Spool

Delete Segment

Deleted Scan Sequence

Eager Spool Sequence
Project

Filter Sort

Hash Match Split

Hash Match
Root Spool

Hash Match
Team

Stream
Aggregate

Insert Switch

Inserted
Scan Table Delete

Iterator
Catchall Table Insert

Lazy Spool Table Scan

Log Row
Scan Table Spool

Merge
Interval Table Update

Merge Join Table-valued
Function

Nested
Loops Top

Nonclustered
Index Delete UDX

Nonclustered
Index Insert Update

Red: Temporary tables/spools
Try rewriting the query
Red: Index or table scans
Create additional or better indexes
Orange: Bookmark lookups
 Consider changing the clustered index
 Consider using a covering index
 Consider limiting the number of

columns in the SELECT statement.
Yellow: Filter and/or sort
 Consider removing any functions in the

WHERE clause
 Consider not using views in your code
 Consider using additional indexes
 Consider not to sort

Factsheet by
Xander Zelders

http://www.dotnet4all.com

by Xander Zelders, http://www.dotnet4all.com

Connectionstring

 SQL Server, Standard security: Provider=sqloledb;Data Source=myServerAddress; Initial
Catalog=myDataBase;User Id=myUsername;Password=myPassword;

 SQL Server, Trusted connection: Provider=sqloledb;Data Source=myServerAddress; Initial
Catalog=myDataBase;Integrated Security=SSPI;

 SQL Server 2005, Standard security: Driver={SQL Native Client};
Server=myServerAddress;Database=myDataBase;Uid=myUsername;Pwd=myPassword;

 SQL Server 2005, Trusted connection: Driver={SQL Native Client};
Server=myServerAddress;Database=myDataBase;Trusted_Connection=yes;

http://www.dotnet4all.com
http://www.dotnet4all.com

