8/3/2021 An Introduction to Using SQL Aggregate Functions with JOINs | LearnSQL.com

An Introduction to Using SQL Aggregate
Functions with JOINs

& Francisco Claria
) Engineer @ Axones
4

Tags: AGGREGATE FUNCTIONS ~JOIN SQL BASICS

Previously, we've discussed the USE OF SQL AGGREGATE FUNCTIONS WITH THE GROUP

BY STATEMENT. Regular readers of the our blog will also remember our

recent TUTORIAL ABOUT JOINS. If you're a bit rusty on either subject, | encourage you

to review them before continuing this article. That's because we will dig further
into aggregate functions by pairing them with JOINs. This duo unleashes the full
possibilities of SQL aggregate functions and allows us to perform computations on

multiple tables in a single query.

What Do SQL Aggregate
Functions Do?

Here's a quick overview of the most common SQL aggregate functions:

FUNCTION PURPOSE EXAMPLE
MIN Returns the smallest value in a SELECT MIN (column)
column. FROM table name

SELECT MAX (column)

MAX Returns the largest value in a column
FROM table name

https://learnsgl.com/blog/introduction-using-aggregate-functions-joins/ 115

8/3/2021 An Introduction to Using SQL Aggregate Functions with JOINs | LearnSQL.com

FUNCTION PURPOSE EXAMPLE

SUM Calculates the sum of all numeric SELECT SUM (column)
values in a column FROM table name

AVG Returns the average value for a SELECT AVG (column)
column FROM table name
Counts the number of non-null SELECT COUNT (column)

COUNT(column) .
values in a column FROM table name

. Counts the total number of rows SELECT COUNT (*) FROM

COUNT(*) . . .

(including NULLs) in a column table name

It's also important to remember that the crour By statement, when used with
aggregates, computes values that have been grouped by column. (For more info,
see A BEGINNER'S GUIDE TO SQL AGGREGATE FUNCTIONS.) We can use GROUP BY
with any of the above functions. For instance, we use the MIN() function in

the examplebelow:

SELECT MIN(column_name)
FROM table name
GROUP BY group_column

This would retrieve the minimum value found in column_name for each set of values
in a group based on the group column column. The same idea applies

for max, sum, ave, and count functions.

Parent-Child JOINs

Now let's dig into some common situations where you will use group by JOINs with
aggregate functions. If you've read A Beginner's Guide to SQL Aggregate
Functions, the following diagram will already be familiar:

https://learnsgl.com/blog/introduction-using-aggregate-functions-joins/ 2/15

8/3/2021 An Introduction to Using SQL Aggregate Functions with JOINs | LearnSQL.com

! 1
l :
X cities } !
! id int(11) PK '
i cityname varchar(45) '
! 1
| users X
|

| id int(11) PK X
X city_id int(11) FK 1
' first_name varchar(45) X
! last_name varchar(45) 1
X age int !
! 1
! 1
X example1 !

If you have used this model before (e.g. doing the examples from the previous
article) please be sure to clear any existing records from your table. You can do this
by executing the following commands:

TRUNCATE cities;
TRUNCATE users;

Let's enter some fresh data into the tables:

INSERT INTO "cities™ VALUES
(1, "Miami'),

(2,'0Orlando'),
(3, "'Las Vegas'),
(4, 'Coyote Springs');

INSERT INTO “users VALUES
(1,1,"'John', 'Doe",22),
(2,1,"'Albert', 'Thomson',15),
(3,2,"Robert', 'Ford"',65),
(4,3,"Samantha', 'Simpson’',9),
(5,2, 'Carlos', 'Bennet',42),
(6,2, 'Mirtha', 'Lebrand’',81),
(7,3, "'Alex"', "Gomez',31);

So we have a table called users and another table called cities. These two tables

have something in common: a numerical city id value. This value is stored in

https://learnsgl.com/blog/introduction-using-aggregate-functions-joins/

3/15

8/3/2021

An Introduction to Using SQL Aggregate Functions with JOINs | LearnSQL.com

the iacolumnin the cities table and in the city id column in the users table.

The city id column holds a reference (a.k.a. a foreign key) that connects a user

record to a city. These matching records allow us to sorn both tables together.

In other words, we know a user's city when we grab the record from

the cities table that has an ia value equal to the value in users.city id . Inthe

following query, we can see this in action:

SELECT cities.*, users.*

FROM cities
JOIN users

ON cities.id = users.city_id;

cities
cityname
Miami
Miami
Orlando
Las Vegas
Orlando
Orlando

Las Vegas

users

city_id

id

first_name
John
Albert
Robert
Samantha
Carlos
Mirtha

Alex

last_name
Doe
Thomson
Ford
Simpson
Bennet
Lebrand

Gomez

age

22

15

65

42

81

31

Since the users table connects to one city via the city ia foreign key, we can say

that a user belongs to a city and thus the city has many users. This is a parent-child

relationship (cities-users); the users table shares a link to the cities table.

With this relationship in mind, let’'s move on and see how we can compute some

interesting summarized data that links both tables together.

Stop confusing INNER and OUTER JOINs with our interactive SQL

JOINSs course!

https://learnsgl.com/blog/introduction-using-aggregate-functions-joins/

4/15

8/3/2021 An Introduction to Using SQL Aggregate Functions with JOINs | LearnSQL.com

Aggregate + GROUP BY + JOIN

Now let's start addressing some practical situations where we will be crouring

values from Jorned tables.

MIN + GROUP BY + JOIN

Computing values based on child records that are grouped by a parent column is
pretty common. Let's build a query that will retrieve the lowest users.age (child

record) for each cityname (parent record):

SELECT cities.cityname, MIN(users.age)
FROM cities
JOIN users
ON cities.id = users.city_id
GROUP BY cities.cityname

This will return:

cityname MIN(users.age)
Las Vegas 9

Miami 15

Orlando 42

There's something very important to point out about the way JOIN works. It will be

more obvious if we look at all cities:

SELECT cities.cityname
FROM cities

https://learnsgl.com/blog/introduction-using-aggregate-functions-joins/ 5/15

8/3/2021 An Introduction to Using SQL Aggregate Functions with JOINs | LearnSQL.com

cityname

Coyote Springs
Las Vegas
Miami

Orlando

As you can see, "Coyote Springs" was not listed before because it has no users. If
you wanted to get that city listed in the summarized results, you should use a 1erT
goin instead:

SELECT cities.cityname, MIN(users.age)
FROM cities
LEFT JOIN users
ON cities.id = users.city_id
GROUP BY cities.cityname

This will return:

cityname MIN(users.age)
Coyote Springs null

Las Vegas 9
Miami 15
Orlando 42

Whether this makes sense or not will depend on your use case, but it's important
that you keep this situation in mind when joining tables.

MAX + GROUP BY + JOINS

https://learnsgl.com/blog/introduction-using-aggregate-functions-joins/ 6/15

8/3/2021 An Introduction to Using SQL Aggregate Functions with JOINs | LearnSQL.com

We can find the greatest age for each city using the max() function:

SELECT cities.cityname, MAX(users.age)
FROM cities
LEFT JOIN users
ON cities.id = users.city_id
GROUP BY cities.cityname

The query above will retrieve:

cityname MAX(users.age)
Coyote Springs null

Las Vegas 31
Miami 22
Orlando 81

Note that | have used rerT Jo1n. | want a list of all the cities, not only those with

associated user records.

SUM + GROUP BY + JOIN

Let's now see how to total ages for each city. We can use the sum() function to do
this:

SELECT cities.cityname, SUM(users.age)
FROM cities
LEFT JOIN users
ON cities.id = users.city_id
GROUP BY cities.cityname

Which returns:

cityname SUM(users.age)

https://learnsgl.com/blog/introduction-using-aggregate-functions-joins/ 7/15

8/3/2021 An Introduction to Using SQL Aggregate Functions with JOINs | LearnSQL.com

cityname SUM(users.age)
Coyote Springs null
Las Vegas 40
Miami 37
Orlando 188

COUNT + GROUP BY + JOIN

Suppose we want to see the number of users in each city. We would use
the count () function, like this:

SELECT cities.cityname, COUNT(users.id)
FROM cities
LEFT JOIN users
ON cities.id = users.city_id
GROUP BY cities.cityname

Which returns:

cityname COUNT (users.id)
Coyote Springs 0
Las Vegas 2
Miami 2
Orlando 3

AVERAGE + GROUP BY + JOIN

Using the number of users in each city (count) and the sum of each city's combined

user ages, we can compute the average age for each city. We simply divide the
summed age by the number of users for each city:

https://learnsgl.com/blog/introduction-using-aggregate-functions-joins/ 8/15

8/3/2021 An Introduction to Using SQL Aggregate Functions with JOINs | LearnSQL.com

SELECT
cities.cityname,
SUM(users.age) AS sum,
COUNT (users.id) AS count,
SUM(users.age) / COUNT(users.id) AS average
FROM cities
LEFT JOIN users
ON cities.id = users.city_id
GROUP BY cities.cityname

Returning:
cityname sum count average
Coyote Springs null 0 null
Las Vegas 40 2 20.0000
Miami 37 2 18.5000
Orlando 188 3 62.6667

Notice how the sum and calculated average results in a NULL value for Coyote
Springs. This is because Coyote Springs has no users and therefore the

summarized column cannot compute a numerical value.
AVG + GROUP BY + JOINS

The previous example used a calculation we entered to find an average age for
each city. We could have used the avc () function instead, as shown below:

SELECT cities.cityname, AVG(users.age)
FROM cities
LEFT JOIN users
ON cities.id = users.city_id
GROUP BY cities.cityname

This results in the same values as the previous example:

https://learnsgl.com/blog/introduction-using-aggregate-functions-joins/

9/15

8/3/2021 An Introduction to Using SQL Aggregate Functions with JOINs | LearnSQL.com

cityname AVG(users.age)
Coyote Springs null

Las Vegas 20.0000
Miami 18.5000
Orlando 62.6667

Filtering Results

Sometimes you will need to FILTER ROWS BASED ON CERTAIN CONDITIONS. In this type

of query, there are three stages where you can do that: weere, mavine, and Join.

Depending on the situation, each of these options can have a different outcome. It's
important to understand which to use when you want a specific result. Let's look at
some examples to illustrate this.

Using the JOIN Predicate

Let's get the number of users under 30 in each city. We will use LerT Join to

retrieve cities without any user records:

SELECT cityname, COUNT(users.id)
FROM cities
LEFT JOIN users
ON cities.id = users.city_id
AND users.age < 30
GROUP BY cities.cityname
ORDER BY cities.cityname;

The condition to include only users with ages lower than 30 is set in
the go1w predicate. This returns the following output:

cityname COUNT (users.id)

https://learnsgl.com/blog/introduction-using-aggregate-functions-joins/ 10/15

8/3/2021 An Introduction to Using SQL Aggregate Functions with JOINs | LearnSQL.com

cityname COUNT (users.id)

Coyote Springs
Las Vegas
Miami

Orlando

All cities are listed, and only those users with ages within range return a non-zero

number. Cities without any users matching our criteria return a zero.

What would have happened if we put the same filtering condition in

the wuere clause?

Improve your SQL JOIN skills with our special interactive course, SQL

JOINSs!

0

Using WHERE Conditions

If place the same conditions in the wuere, it would look like this:

SELECT cityname, COUNT(users.id)
FROM cities
LEFT JOIN users

ON cities.id = users.city_id
WHERE users.age < 30
GROUP BY cities.cityname
ORDER BY cities.cityname;

This will result in:

cityname COUNT (users.id)

Las Vegas

Miami

https://learnsgl.com/blog/introduction-using-aggregate-functions-joins/

11/15

8/3/2021 An Introduction to Using SQL Aggregate Functions with JOINs | LearnSQL.com

This is not what | expected; | wanted to get ALL cities and a count of their
respective users aged less than 30. Even if a city had no users, it should have been

listed with a zero count, as returned by the soin predicate example.

The reason this didn’t return those records is because waeEre conditions are
applied after the Join. Since the condition users.age < 30 removes all "Coyote
Springs" and "Orlando" records, the summarized calculation can’t include these

values. Only "Las Vegas" and "Miami" meet the wurre conditions, so only "Las

Vegas" and "Miami" are returned.

In contrast, when the condition is applied in the soin predicate, user records with
no matching age are removed before the two tables are joined. Then all the cities
are matched by user columns, as you would expect when using a rerr Jorn. This
means that all cities will be part of the results; only user records that did not meet

the users.age < 30 condition are filtered out. In this case, the JOIN predicate

returns the desired outcome.
Using HAVING Conditions

We mentioned this is the first article, but we'll repeat it here: using the wuere clause

to filter summarized columns doesn't work. Look at the example below.

SELECT cityname, COUNT(users.id)
FROM cities
LEFT JOIN users

ON cities.id = users.city_id
WHERE COUNT(users.id) > 2
GROUP BY cities.cityname
ORDER BY cities.cityname;

This causes the database to issue a complaint like this one from MySQL.:

Error Code: 1111. Invalid use of group function

Instead, use the uavine clause:

https://learnsgl.com/blog/introduction-using-aggregate-functions-joins/ 12/15

8/3/2021 An Introduction to Using SQL Aggregate Functions with JOINs | LearnSQL.com

SELECT cityname, COUNT(users.id)
FROM cities
LEFT JOIN users

ON cities.id = users.city_id
GROUP BY cities.cityname
HAVING COUNT(users.id) > 2
ORDER BY cities.cityname;

This returns the intended records (only cities with more than two users):

cityname COUNT (users.id)

Orlando 3

Dealing with NULLs

Besides the edge cases already presented, it is important to consider something
that isn't so obvious. Let's go back to the count () example:

SELECT cities.cityname, COUNT(users.id)
FROM cities
LEFT JOIN users
ON cities.id = users.city_ id
GROUP BY cities.cityname

This returns:

cityname COUNT (users.id)
Las Vegas 2
Miami 2
Orlando 3

https://learnsgl.com/blog/introduction-using-aggregate-functions-joins/ 13/15

8/3/2021 An Introduction to Using SQL Aggregate Functions with JOINs | LearnSQL.com
If I had used count (*) instead of counT (users.id) , the total row count would have
been generated. This would have given us an unintended value € in this case, a
false "1" for "Coyote Springs". This result is due to the nature of the LerT JoOIN.

Here is an example:

SELECT cities.cityname, COUNT(*)
FROM cities
LEFT JOIN users

ON cities.id = users.city_id
GROUP BY cities.cityname

This would return:

cityname COUNT (users.id)
Las Vegas 2
Miami 2
Orlando 3

So count (*) is counting a "1" for Coyote Springs because the LErT JoIN iS
returning a row with NULL values. Remember that in count (*) , a row with NULLs

still counts.

For the same reason, count (users.id) returns the expected count of "0";

the users.id column value is null for Coyote Springs.

In other words, always use count (column) With this type of query.

A Final Tip on Working with SQL
Aggregate Functions

https://learnsgl.com/blog/introduction-using-aggregate-functions-joins/ 14/15

8/3/2021 An Introduction to Using SQL Aggregate Functions with JOINs | LearnSQL.com
Finally, I'd like to add that working with sq/ aggregate functions € especially when
using Joins € requires you understand SQL and the data you are working with. Try
the queries in a smaller subset of your data first to confirm that all calculations are
working as expected. If, possible, check some outputs against a reference value to

validate your queries' outcomes.

Keep in mind that using conditions in the soin predicate (after the on) is not the
same as filtering in the wuere (or using maving). These can create subtle (or not so
subtle) differences in your summarized data, which could result in hard-to-spot

errors. Pay special attention to your filtering choices.

As always, thanks for reading and please feel free to share your own experiences in

the comments section.

https://learnsgl.com/blog/introduction-using-aggregate-functions-joins/ 15/15

