
1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 1/41

3 - Implementing a Relational Database

On this page: Download:

Designing a Relational Database to Support Fast Transactions | Normalizing Tables |
Implementing Efficient Transactions | Implementing Distributed Transactions |
Designing a Relational Database to Optimize Queries | Denormalizing Tables |
Maintaining Query-Only Data | Designing Indexes to Support Efficient Queries |
Partitioning Data | How Adventure Works Designed the Database for the Shopping
Application | Registering a New Customer and Logging In | Placing an Order | Verifying
the Price of an Item | Maintaining Data Integrity | Implementing a Relational Database
to Maximize Concurrency, Scalability, and Availability | Scaling Out and Sharding |
Minimizing Network Latency | Improving Availability | Implementing a Relational
Database in the Cloud by Using Microsoft Windows Azure | Why Adventure Works
Used Windows Azure SQL Database for the Shopping Application | Accessing Data in a
Relational Database from an Application | Connecting to a Relational Database |
Abstracting the Database Structure from Application Code - Using an Object-Relational
Mapping Layer, Using the Entity Framework, Using a Micro-ORM | How the Shopping
Application Accesses the SQL Server Database | Retrieving Data from the SQL Server
Database | Inserting, Updating, and Deleting Data in the SQL Server Database |
Summary | More Information

The Shopping application stores the details of customers by using SQL Server. As described in Chapter 2, "The Adventure Works
Scenario," the developers also decided to use SQL Server to store order information, at least initially.

This chapter describes the concerns that Adventure Works addressed in order to design the SQL Server database for the
Shopping application. It summarizes the decisions that they made in order to optimize the database to support the business
functions of the application, where they deployed the database, and how they designed the code that accesses the database.

Chapter 2, "The Adventure Works Scenario," describes the primary business functions of the Shopping application.

Designing a Relational Database to Support Fast Transactions

Note:

SQL Server is an example of a relational database management system (RDBMS). Relational databases first emerged in the
early 1970s as a direct result of the research performed by Edgar Codd. Since that time, RDBMSs have become a mainstream
technology. The simple-to-understand constructs and the mathematical underpinning of relational theory have caused
RDBMSs to be viewed as the repository of choice for many systems. However, it is important to understand how to apply the

https://www.microsoft.com/en-us/download/details.aspx?id=40294
https://www.microsoft.com/en-us/download/details.aspx?id=40327
http://amzn.to/14ZmrbU
https://msdn.microsoft.com/en-us/library/dn313283.aspx

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 2/41

relational model to your data, and how you application accesses this data, otherwise the result can be a database that
performs very poorly and that contains inconsistent information.

A common scenario for using a relational database is as the repository behind on-line transaction processing (OLTP) systems. A
well-designed relational database enables your application to insert and update information quickly and easily. Most modern
RDBMSs implement fast and efficient strategies that ensure the isolation of transactions and the integrity of the data that
participates in these transactions.

This section summarizes some of the strategies that Adventure Works considered to maximize the transactional throughput of
the Shopping application.

Normalizing Tables
An important principle that underpins the relational model is that a single piece of information, or fact, should be stored only
once. For example, in the Adventure Works database, the fact that the sales tax charged on order SO43659 was 1971.51 is
recorded in a single row in the SalesOrderHeader table and nowhere else in the database. Additionally, each fact about an item
should be independent of any other facts about the same item. Taking order SO43659 as the example again, this order is
recorded as having been due to arrive with the customer by July 13, 2005. This information is independent of the sales tax
amount, and the due date can change without affecting the sales tax amount.

In a strict implementation of the relational model, independent facts should be recorded in separate tables. In the Adventure
Works database, this would mean having a table that holds information about the sales tax amounts
(SalesOrderHeaderTaxAmount), and another table that stores order due dates (SalesOrderHeaderDueDate). Further tables can
hold other information; SalesOrderHeaderOrderDate could record the date on which each order was placed, and
SalesOrderHeaderTotalDue could store the total value of the order, for example. A schema that holds such a collection of tables
is referred to as being normalized.

The primary advantage of a normalized structure is that it can help to optimize operations that create, update, and delete data in
an OLTP-intensive environment, for the following reasons.

Each piece of information is held only once. There is no need to implement complex, time-consuming logic to search for
and modify every copy of the same data.
A modification only affects a row holding a single piece of data. If a row in a table contains multiple data items, as occurs
in a denormalized table, then an update to a single column may block access to other unrelated columns in the same row
by other concurrent operations.

Note:

Many RDBMSs implement row versioning to enable multiple concurrent operations to update different columns in the
same row in a table. However, this mechanism comes at the cost of additional processing and memory requirements,
which can become significant in a high-volume transaction processing environment.

You have complete flexibility in the schema of your data. If you need to record additional information about an entity,
such as the sales person that handled any enquiries about the order, you can create a table to hold this information.
Existing orders will be unaffected, and there is no need to add columns to an existing table that allows null values.

Figure 1 illustrates a normalized schema for holding sales order header information. For contrast, Figure 1 also depicts the
existing denormalized SalesOrderHeader table. Notice that order 44544 does not have a sales tax value recorded; in the
normalized schema, there is no row in the SalesOrderHeaderTaxAmount table for this order, but in the denormalized
SalesOrderHeader table the same order has a null value for this data.

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 3/41

Note:

The SalesOrderHeader table is actually in Third Normal Form (3NF), and depicts the level of partial denormalization commonly
implemented by many relational database designers. The section "Denormalizing Tables" later in this chapter provides more
information about 3NF.

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 4/41

Figure 1 - A fully normalized set of tables holding sales tax amount, order due date, order date, and total due information
compared to the partially denormalized SalesOrderHeader table

Poe says:

Allowing a table to include null values in a column adds to the complexity of the business logic (and code) that
manipulates or queries the data in that table. This is because you may need to check for null values explicitly
every time you query or modify data in this table. Failure to handle null values correctly can result in subtle bugs
in your application code. Eliminating null values can help to simplify your business logic, and reduce the chances
of unexpected errors.

You can find more information on the benefits of normalizing a SQL Server database on the "Normalization" page
in the SQL Server 2008 R2 documentation on the MSDN web site. This page describes normalization in SQL Server
2008 R2, but the same principles apply to SQL Server 2012 and Windows Azure SQL Database.

Implementing small discrete tables can enable fast updates of individual data items, but the resultant schema naturally consists
of a large number of narrow tables, and the data can easily become fragmented. The information that comprises a single logical
entity, such as an order, is split up into multiple tables. Reconstructing the data for an entity requires joining the data in these
tables back together, and this process requires processing power. Additionally, the data might be spread unevenly across the
physical disks that provide the data storage, so joining data from several tables can incur a noticeable I/O overhead while disk
heads have to seek from one location to another. As the number of requests increases, contention can cause the performance of
the database to suffer, leading to a lack of scalability. Many modern RDBMSs attempt to counter these overheads by
implementing in-memory caching to eliminate as much I/O as possible, and partitioning of data to reduce contention and
maximize distribution.

Poe says:

You can create views as an abstraction of complex, multi-table entities to simplify the logical queries that
applications perform. An application can query a view in the same way as a table. However, the RDBMS still needs
to perform the various join operations to construct the data for a view when it is queried.

https://msdn.microsoft.com/library/ms191178(v=sql.105).aspx

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 5/41

Partial denormalization of tables (combining them together) can help to alleviate some of these concerns, and you should seek
to balance the requirement for performing fast data updates against the need to retrieve data efficiently in your applications.
Data that is modified rarely but read often will benefit from being denormalized, while data that is subject to frequent changes
may be better left normalized.

Implementing Efficient Transactions
An OLTP scenario is characterized by a large number of concurrent operations that create, update, and delete data, packaged up
as transactions. Most modern RDBMSs implement locking and logging strategies to ensure that the ACID (Atomicity,
Consistency, Isolation, and Durability) properties of transactions are maintained. These features aim to guarantee the integrity of
the data, but they necessarily have an impact on the performance of your transactions, and you should try and minimize their
negative effects wherever possible. The following list provides some suggestions:

Keep transactions short. A long-running transaction can lock data for an extended period of time, increasing the
chances that it will block operations being performed by other concurrent transactions. Therefore, to maximize
throughput, it is important to design the business logic carefully, and only perform the operations that are absolutely
necessary within the bounds of a transaction.

Note:

Many RDBMSs support the notion of isolation levels, which can affect the amount of blocking that a transaction
experiences at the expense of consistency. For example, SQL Server implements the READ UNCOMITTED isolation
level that enables transaction A to read the uncommitted changes made by transaction B, bypassing any locks that
might be held over the changed data. If the change is subsequently rolled back by transaction B, the data read by
transaction A will be inconsistent with the values in the database. The most restrictive isolation level is SERIALIZABLE,
which blocks if transaction A attempts to read data that has been changed by transaction B, but also prevents
transaction B from subsequently changing any data that has been read by transaction A. This isolation level guarantees
that if an application reads the same data item more than once during a transaction, it will see the same value each
time. SQL Server also supports other isolation levels that fall between these two extremes.

Avoid repeating the same work. Poorly designed transactions can lead to deadlock, resulting in operations being
undone. Your applications have to detect this situation and may need to repeat the transaction, reducing the performance
of the system still further. Design your transactions to minimize this possibility. For example, always access tables and
other resources in the same sequence in all operations to avoid the "deadly embrace" form of deadlock.
Avoid implementing database triggers over data that is updated frequently. Many RDBMSs support triggers that run
automatically when specified data is inserted, updated, or deleted. These triggers run as part of the same transaction that
fired them, and they add complexity to the transaction. The developer writing the application code to implement the
transaction might not be aware that the triggers exist, and might attempt to duplicate their work, possibly resulting in
deadlock.

Poe says:

Triggers are useful in query-intensive databases containing denormalized tables. In a denormalized database that
contains duplicated data, you can use triggers to ensure that each copy of the data is updated when one instance
changes.

For more information about triggers in SQL Server 2012, see the "DML Triggers" topic on MSDN.

https://msdn.microsoft.com/library/ms178110.aspx

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 6/41

Do not include interactivity or other actions that might take an indeterminate period of time. If your transactions
depend upon input from a user, or data retrieved from a remote source, then gather this data before initiating the
transaction. Users may take a long time to provide data, and information received from a remote source may take a long
time to arrive (especially if the remote data source is some distant site being accessed across the Internet), give rise to the
same consequences as a long-running transaction.
Implement transactions locally in the database. Many RDBMSs support the concept of stored procedures or other code
that is controlled and run by the database management system. You can define the operations that implement a
transaction by using a stored procedure, and then simply invoke this stored procedure from your application code. Most
RDBMSs are more easily able to refactor and optimize the operations in a stored procedure than they are the individual
statements for a transaction implemented by application code that runs outside of the database.
This approach reduces the dependency that the application has on a particular database schema but it might introduce a
dependency on the database technology. If you switch to a different type of database, you might need to completely
reimplement this aspect of your system.

For information about the benefits of using stored procedures in SQL Server 2012, see the "Stored Procedures
(Database Engine)" topic on MSDN.

Implementing Distributed Transactions
A transaction can involve data held in multiple databases that may be dispersed geographically.

Note:

The architecture of an application may initially appear to require a single database held in a central location. However, the
global nature of many modern customer-facing applications can often necessitate splitting a single logical database out into
many distributed pieces, to facilitate scalability and availability, and reduce latency of data access. For example, you might find
it beneficial to partition a database to ensure that the majority of the data that a customer accesses is stored geographically
close to that customer. The section "Implementing a Relational Database to Maximize Concurrency, Scalability, and
Availability" later in this chapter provides more information.

Solutions based on distributed synchronous transactions, such as those that implement ACID semantics, tend not to scale well.
This is because the network latency of such a system can lead to long-running transactions that lock resources for an extended
period, or that fail frequently, especially if network connectivity is unreliable. In these situations, you can follow a BASE (Basic
Availability, Soft-state, Eventual consistency) approach.

In a BASE transaction, information is updated separately at each site, and the data is propagated to each participating database.
While the updates are in-flight, the state of overall system is inconsistent, but when all updates are complete then consistency is
achieved again. The important point is to ensure that the appropriate changes are eventually made at all sites that participate in
the transaction, and this necessitates that the information about these changes is not lost. This strategy requires additional
infrastructure. If you are using Windows Azure, you can implement BASE transactions by using Windows Azure Service Bus Topics
and Subscriptions. Application code can post information about a transaction to a Service Bus Topic, and subscribers at each site
can retrieve this information and make the necessary updates locally.

For more information about implementing BASE transactions by using Windows Azure Service Bus Topics and
Subscriptions, see Appendix A, "Replicating, Distributing, and Synchronizing Data" in the guide "Building Hybrid
Applications in the Cloud on Windows Azure," available on MSDN.

https://msdn.microsoft.com/library/ms190782.aspx
https://msdn.microsoft.com/en-us/library/hh868047.aspx
https://msdn.microsoft.com/library/hh871440.aspx

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 7/41

Jana says:

BASE transactions are most appropriate in situations where strict consistency is not required immediately, as long
as data is not lost and the system eventually becomes consistent. Common scenarios include inventory and
reservation systems. Many online banking systems also implement BASE transactions. If you pay for an item in a
supermarket and then view your account online, the details of the transaction are only likely to appear some time
later although the money will have left your account immediately.

Designing a Relational Database to Optimize Queries
One of the prime strengths of the relational model is the ability to retrieve and format the data to generate an almost infinite
variety of reports. A normalized database as described in the previous section can be highly efficient for implementing OLTP, but
the fragmentation of data into multiple tables can make queries slower due to the additional processing required to retrieve and
join the data. In general, the more normalized the tables in a database are, the more tables you need to join together to
reconstruct complete logical entities. For example, if you normalize the order data in the Adventure Works database as described
in the previous section, then an application that reports or displays the details of orders must perform queries that reconstruct
each order from these tables. Figure 2 shows an example of just such a query that retrieves the data for order 44544. As an
added complication, there is no row in the SalesOrderHeaderTaxAmount table for this order, so it is necessary to phrase the
query by using a right outer join which generates a temporary ghost row:

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 8/41

Figure 2 - Reconstructing the details of an order from the normalized tables holding order information
This section describes some techniques that you can follow to optimize your databases for query access.

Denormalizing Tables
If the database contains the data for a large number of entities and the application has to scale to support a large number of
concurrent users, then it is important for you to reduce the overhead of performing queries.

The natural solution is to denormalize the database. However you must be prepared to balance the query requirements of your
solution against the performance of the transactions that maintain the data in the database. Most organizations design the
majority of their tables to follow 3NF. This level of normalization ensures that the database does not contain any duplicate or
redundant data, while at the same time storing the data for most entities as a single row.

In a decision support system or data warehouse, you can go further and denormalize down to Second Normal Form (2NF), First
Normal Form (1NF), or even denormalize the data completely. However, tables that follow these structures frequently contain
large amounts of duplicated data, and can impose structural limitations on the data that you can store. For example, in the
Adventure Works database, order information is divided into two tables: SalesOrderHeader that contains information such as
the shipping details and payment details for customer that placed the order, and SalesOrderDetail that contains information
about each line item in the order. Any query that has to find the details of an order joins these two tables together across the
SalesOrderID column in both tables (this column is the primary key in the SalesOrderHeader table, and a foreign key in the
SalesOrderDetail table). Figure 3 illustrates the structure of these two tables (not all columns are shown):

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 9/41

Figure 3 - The structure of the SalesOrderHeader and SalesOrderDetail tables
There are at least two ways that enable you to eliminate this join:

Add the columns from the SalesOrderHeader table to the SaledOrderDetail table, and then remove the
SalesOrderHeader table. This design results in a table in 1NF, with duplicated sales order header data, as shown
highlighted in Figure 4.

Figure 4 - SalesOrder data structured as a table in 1NF
Add the columns from the SalesOrderDetail table to the SalesOrderHeader table, and repeat these columns for each
line item in an order. The result of this approach is a fully denormalized table. It does not contain any duplicated data, but
you have to decide in advance the maximum number of line items that an order can contain. This approach can be too
inflexible if the volume of line items can vary significantly between orders. Figure 5 shows the order data as a
denormalized table.

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 10/41

Figure 5 - SalesOrder data structured as a fully denormalized table
Additionally, a table such as this can make queries very complicated; to find all orders for product 711 you would have to
examine the ProductID_1, ProductID_2, ProductID_3, and ProductID_4 columns in each row.

Maintaining Query-Only Data
If you denormalize tables, you must ensure that the data that is duplicated between rows remains consistent. In the orders
example, this means that each row for the same order must contain the same order header information. When an application
creates a new order it can copy the duplicated data to the appropriate columns in all the rows for that order.

The main challenge occurs if the application allows a user to modify the data for an order. For example, if the shipping address of
the customer changes, then the application must update this address for every row that comprises the order. This additional
processing has an impact on the performance of the operation, and the extra business logic required can lead to complexity in
the application code, and the corresponding increased possibility of bugs. You could use triggers (if your RDBMS supports them)
to help reduce the processing overhead and move the logic that maintains the duplicate information in the database away from
your application code. For example, a trigger that is fired when the shipping address for an order row is modified could find all
other rows for the same order and replicate the change. However, you should avoid placing too much processing in a trigger
because it can have a detrimental effect on the performance of the RDBMS as a whole, especially if the same trigger is fired
frequently as the result of interactions from a large number of concurrent users.

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 11/41

If your system must support efficient queries over a large data set, and also allow fast updates to that data while minimizing the
processing impact on the RDBMS, you can maintain two versions of the database; one optimized for queries and the other
optimized for OLTP. You can periodically transfer the modified data from the OLTP database, transform it into the structure
required by the query database, and then update the query database with this data. This approach is useful for DSS solutions
that do not require up to the minute information. You can arrange for a regular batch process to perform the updates in bulk
during off-peak hours. Many RDBMS vendors supply tools that can assist with this process. For example, Microsoft SQL Server
provides SQL Server Integration Services (SSIS) to perform tasks such as this.

You can find more information about SQL Server Information Services in the "SQL Server Integration Services"
section in SQL Server 2012 Books online.

Designing Indexes to Support Efficient Queries
Searching through a table to find rows that match specific criteria can be a time-consuming and I/O intensive process, especially
if the table contains many thousands (or millions) of rows. Most RDBMSs enable you to define indexes to help speed this process
up, and provide more direct access to data without the necessity of performing a linear search.

Most RDBMSs implement unique indexes (indexes that disallow duplicate values) over the columns that comprise the primary
key of a table. The rationale behind this strategy is that most queries that join tables together are based on primary key/foreign
key relationships, so it is important to be able to quickly find a row by specifying its primary key value. If your application poses
queries that search for data based on the values in other columns, you can create secondary indexes for these columns. You can
also create composite indexes that span multiple columns, and in some cases the RDBMS may be able to resolve a query simply
by using data held in an index rather than having to fetch it from the underlying table. For example, if your application frequently
fetches the first name and last name of a customer from a customers table by querying the customer ID, consider defining a
composite index that spans the customer ID, first name, and last name columns.

Using indexes can speed up queries, but that do have a cost. The RDBMS has to maintain them as data is added, modified, and
deleted. If the indexed data is subject to frequent updates, then this maintenance can add a considerable overhead to the
performance of these operations. The more indexes that you create, the greater this overhead. Furthermore, indexes require
additional storage resources, such as disk space and cache memory. Creating a composite index over a very large table might
easily add 30% (or more) to the space requirements for that table.

For more information about implementing indexes in a SQL Server database, read the "Indexes" section in Books
Online for SQL Server 2012.

It is common to minimize the number of indexes in an OLTP-oriented database, but implement a comprehensive indexing
strategy in a database used by DSS applications.

Poe says:

If you are maintaining two versions of a database (one for OLTP and one for DSS) as described in the section
"Maintaining Query-Only Data" earlier in this chapter, then drop all of the indexes in the DSS database before
you perform the bulk transfer of data from the OLTP database, and then rebuild them when the transfer is
complete.

https://msdn.microsoft.com/library/ms141026.aspx
https://msdn.microsoft.com/library/ms175049.aspx

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 12/41

Partitioning Data
At the lowest level, a relational database is simply a file on disk. A common cause of poor performance when querying tables in a
relational database is contention resulting from multiple I/O requests to the same physical disk. To counter this issue, many
modern RDBMSs enable you to implement a relational database as a collection of files (each on a separate disk), and direct the
data for different tables to a specific file or physical device. For example, if your application frequently runs queries that join
information from customer and order tables, you could place the data for the customer table on one disk, and the data for the
order table on another. You could also arrange for specific indexes to be stored on disks separate from the tables that they
reference. Figure 6 shows an example (the tables are fictitious and are not part of the Adventure Works database). The query
joins the Customers and Orders table over the CustomerID column to find the details of customers and the orders that they
have placed. The Customers and Orders tables are placed on separate physical disks, and the CustomerID index (the primary
key index for the Customers table) is placed on a third disk. This arrangement enables the RDBMS to take advantage of parallel
I/O operations; the RDBMS can scan through the Orders table sequentially to find the CustomerID for each order, and use the
CustomerID index to lookup the location of the customer details.

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 13/41

Figure 6 - Maximizing parallel I/O by placing tables and indexes on separate physical disks

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 14/41

You can combine this technique with partial normalization of a table to place commonly accessed data on one device, and less
frequently accessed data on another. This approach, known as vertical partitioning, reduces the row size for a table referenced by
the most common queries, and therefore enables the RDBMS to retrieve more rows from disk in each I/O operation. If the
RDBMS implements caching, then it can store more rows in memory, optimizing the process still further.

Figure 7 - Partially normalizing a table and implementing vertical partitioning

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 15/41

Many RDBMSs also support horizontal partitioning. Horizontal partitioning enables you to divide the data for a single table up
into sets of rows according to a partition function, and arrange for each set of rows to be stored in a separate file on a different
disk.

You decide how to partition data based on how it is most frequently accessed. For example, you could partition customer order
information by the month and year in which the order was placed; orders for December 2012 could be written to one partition,
orders for January 2013 to another, orders for February 2013 to a third partition, and so on. In this way, queries that retrieve
orders based on their date are quickly directed to a specific partition, and the data can be retrieved without having to scan
through data or indexes relating to different months and years.

Figure 8 - Implementing horizontal partitioning
As well as improving the performance of specific queries, horizontal partitioning can also speed up operations that transfer data
from an OLTP system into a DSS database, and you can perform maintenance operations such as reindexing data more quickly.
This is because these operations typically only target contiguous subsets of the data rather than the entire table, and data held in
unaffected partitions does not have to be updated.

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 16/41

Horizontal partitioning is not so efficient for queries that retrieve data from multiple partitions. In the orders example, queries
that need to fetch the set of orders for an entire year, or a period that spans a month boundary, may need to perform additional
I/O to locate the various partitions. If the partitions are stored on different disks, the RDBMS may be able to offset this overhead
by parallelizing the I/O operations.

For more information about implementing horizontal partitioning with SQL Server, read the "Partitioned Tables and
Indexes" section in Books Online for SQL Server 2012. For information on how SQL Server queries can take
advantage of horizontal partitioning, see the "Query Processing Enhancements on Partitioned Tables and Indexes"
page in SQL Server Books Online.

The Microsoft SQL Server Customer Advisory Team (SQLCAT) has published a list of techniques that you can adopt
for building a large-scale database that supports efficient queries. This list is available on the "Top 10 Best Practices
for Building a Large Scale Relational Data Warehouse" page on the SQLCAT website.

How Adventure Works Designed the Database for the Shopping
Application
The Shopping application supports a small number of business scenarios, as described in Chapter 2. The features that utilize the
customer and order information are those concerned with registering a customer, logging in, and placing an order. The
developers at Adventure Works examined the usage patterns for the various tables in the database for each of the scenarios, and
they came to the following conclusions about how they should structure the data required to support these scenarios.

Registering a New Customer and Logging In
This functionality is arguably the most complex and sensitive part of the system. The developers had to design a schema that
supported the following business requirements:

Every customer must have an account that is identified by their email address and protected by using a password.
All customers must pay for their orders by providing the details of a valid credit card.
All customers must provide a billing address and a shipping address. These addresses can be the same, but they can also
be different.

The dynamic nature of this data led the developers to implement the customer, credit card, and address information as a series
of tables in 3NF. This structure helps to reduce the probability of duplicate information, while optimizing many of the common
queries performed by the application. Figure 9 shows these tables and the relevant columns:

https://msdn.microsoft.com/library/ms190787.aspx
https://msdn.microsoft.com/library/ms345599.aspx
http://sqlcat.com/sqlcat/b/top10lists/archive/2008/02/06/top-10-best-practices-for-building-a-large-scale-relational-data-warehouse.aspx

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 17/41

Figure 9 - Tables used by the Shopping application to store customer information

Note:

The tables in the AdventureWorks2012 database contain additional columns, not shown in Figure 9, that are not relevant to
the Shopping application.
All primary key columns in the Adventure Works database are implemented by using SQL Server clustered indexes. All foreign
key columns have a secondary, non-clustered index to improve the performance of join operations.

Placing an Order
When the customer clicks Checkout on the shopping cart page in the Shopping application, the products that constitute the
order are taken from the customer's shopping cart and used to create a new order. The customer can, in theory, place any
number of items in their shopping cart.

The designers at Adventure Works considered storing the details of orders in a single denormalized table, but as described in
Chapter 2, the warehousing and dispatch systems that arrange for goods to be picked and shipped to the customer modify the
details held in an order (these systems are OLTP-intensive but are outside the scope of the Shopping application.) Therefore, the
designers chose to implement the database schema for orders by using two tables:

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 18/41

The SalesOrderHeader table holds information about the order (such as the identity of the customer, the billing address,
the shipping address, the credit card that the customer used, and the value of the order).
The SalesOrderDetails table holds the individual line items for each order.

Figure 10 shows the SalesOrderHeader and SalesOrderDetail tables:

Figure 10 - Tables used by the Shopping application to record the details of an order

Note:

This diagram only shows the columns in these tables that are relevant to the Shopping application. The warehousing and
dispatch systems also use these tables and maintain additional information about orders (such as whether the items have
been picked, the order has been dispatched, and so on) which are not included here.

The Shopping application also maintains a full audit trail of any changes made to orders after they have been
placed. To support this functionality and to enable order history information to be retrieved quickly, the Shopping
application copies the important details of an order to a separate document database when the order is placed,
and each time the order is updated. The order history records for each order in the document database are
identified by an order code rather than the SalesOrderID used by the SQL Server database. This order code is a
copy of the TrackingID field stored in the SQL Server database. See Chapter 5, "Implementing a Document
Database," for more information about how order history information is stored and managed.

Verifying the Price of an Item

https://msdn.microsoft.com/en-us/library/dn313284.aspx

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 19/41

Before an order can actually be placed and the details stored in the database, the Shopping application checks to see whether
the price of any items have changed since the customer first placed them in their shopping cart (a customer's shopping cart is a
long-lived entity that survives after the customer has logged out, and is restored when the customer logs back in again, possibly
at a much later date).

Most of the details of each product are stored in the Product Catalog. This is a document database described in Chapter 5.
However, the inventory management functionality of the warehousing system inside Adventure Works maintains product
information in a separate SQL Server database, and a separate batch system (that is outside the scope of the Shopping
application) periodically updates the product catalog with the latest inventory information. The product inventory information in
the SQL Server database is stored in a single table name Product. The Shopping application checks the prices of items against
this table rather than the product catalog. The Product table contains a number of columns that are required by the
warehousing system, but the only information used by the Shopping application comprises the ProductID and the ListPrice
columns shown in Figure 11.

Figure 11 - The columns in the Product table used by the Shopping application to verify the current price of an item

Maintaining Data Integrity
The Shopping application implements the following transactional operations.

When a new customer registers with the Shopping application, the details of the customer and their credentials are added
to the Person, EmailAddress, and Password tables. At the same time, their address is stored in the Address table, and
this also requires creating the appropriate rows in the BusinessEntity and BusinessEntityAddress tables to link the
address back to the Person table. Finally, the credit card details are added to the CreditCard table which is linked back to
Person by adding a new row to the PersonCreditCard table.
When the customer places an order, the contents of the shopping cart are used to construct a sales order. This action
requires that a new SalesOrderHeader row is created together with a SalesOrderDetail row for each item in the
shopping cart, and then the rows in the ShoppingCartItem table must be deleted.

These operations are critical to the Shopping application. Failure to implement either of these as atomic processes could result in
orders being lost or in incomplete details for a customer being added to the database, which in turn could cause problems when
an order is charged or shipped. Because the designers knew that the structure of the database might change and that parts of
the system such as the Shopping Cart and Order History will use a different type of database, they chose to implement these
operations by writing code in the Shopping application rather than attempt to locate this functionality in the database in the
form of stored procedures.

Chapter 8, "Building a Polyglot Solution" describes strategies for implementing atomic operations that span
different types of databases, including NoSQL databases.

Implementing a Relational Database to Maximize Concurrency,
Scalability, and Availability
As more and more users access a database, issues of scalability and availability become increasingly important. In a system
intended to be used by a widely distributed audience, you also need to consider where data will be located in order to minimize
network latency. To help ensure that a database remains available and responsive, many RDBMSs support redundancy and

https://msdn.microsoft.com/en-us/library/dn313279.aspx

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 20/41

partitioning to spread the data processing load across multiple physical servers. You can also address scalability by using
RDBMSs that run in the cloud and that provide the elasticity necessary to scale up and down as data processing requirements
dictate. This section examines these issues, and describes some solutions that enable you to resolve them.

Scaling Out and Sharding
As the number of concurrent users and the volume of requests escalate, you need to ensure that the database scales to meet
demand. You can either scale up the hardware, or scale out. Scaling up typically means purchasing, configuring, and maintaining
a single unified hardware platform that provides enough resources to handle the peak workload. This approach can be expensive
and often requires considerable administrative overhead if you need to upgrade the system to more powerful machinery. For
these reasons, a scale-out approach is usually preferred.

Scaling out spreads the logical database out across multiple physical databases, each located on a separate node. As the
workload increases over time, you can add nodes. However, the structure of the database and the tables that it contains are
more complex, and understanding how to partition the data is crucial for implementing this strategy successfully.

As described in Chapter 1, "Data Storage for Modern High-Performance Business Applications," the most common pattern for
designing a database intended to scale out in this way is to use horizontal partitioning, or sharding, at the database level. Each
partition can reside on a separate node and can contain information from several tables. As the size of the database and the
number of requests increase, you can spread the load across additional nodes, and performance can improve in a near-linear
manner as you add more nodes. This approach can also be more cost-effective than scaling up because each node can be based
on readily-available commodity hardware.

Sharding requires that you divide your database up into logical subsets of data, and deploy each subset to a specific node. Each
node is a database in its own right, managed by an RDBMS.

Note:

Sharding a database necessarily distributes data across multiple nodes. While this can improve scalability and can help
optimize applications that query data, it can also have a detrimental effect on the performance of any transactions that
update data spread across multiple shards. In these situations, you may find it better to trade consistency for performance
and implement updates as BASE operations rather than distributed ACID transactions.

You can implement sharding in many ways, but the following two strategies illustrate how to apply the most common patterns to
a relational system:

The Shared Nothing Pattern. In this pattern, each database runs as an autonomous unit, and the sharding logic that
determines where to store and retrieve data is implemented by the application that users run. This model is called the
shared nothing pattern because no data is shared or replicated between nodes. Figure 12 shows this model.

https://msdn.microsoft.com/en-us/library/dn313285.aspx

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 21/41

Figure 12 - Scaling out by implementing the Shared Nothing approach
In this example, the sharding logic determines which shard contains the details of the specified product based on the
subcategory (different shards hold data for different subcategories.) This pattern does not require any special support
from the RDBMS, but the disadvantage is that shards can become unbalanced if one subcategory contains far more data
than another. If this is likely, then you should implement sharding logic that more evenly distributes data, such as using a
hash of the primary key. Redistributing data across existing unbalanced shards and modifying the sharding logic can be a
complex, manual process that may require an administrator to take the application temporarily offline. This may not be
acceptable if the system has to be available 24 hours a day.

Additionally, the sharding logic has to have enough information to know which shard to access for any given query. For
example, if the data is sharded based on a hash of the primary key, but a query does not specify which key values to look
for, then the sharding logic may need to interrogate every shard to find all matching data. This is not an efficient strategy.

The Federation Pattern. In this pattern, the RDBMSs take on the responsibility for managing the location of data and
balancing the shards. One database acts as the federation root, and stores the metadata that describes the location of the
different shards and how data is partitioned across these shards, as shown in Figure 13.

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 22/41

Figure 13 - Scaling out by implementing the Federation pattern
Applications connect to the federation root, but requests are transparently directed towards the database holding the
appropriate shard. As the data changes, it can be relocated from one shard to another to rebalance the partitions.

This pattern requires support from the RDBMS itself to implement the federation root. An increasing number of RDBMS
vendors are implementing this pattern, including Microsoft SQL Server and Windows Azure SQL Database.

Note:

Sharding can provide fast, direct access to data, but if you need to join this data with information held in tables located on
other nodes then this advantage can disappear. You can combine sharding with replication (described in the section
"Minimizing Network Latency" below) if you regularly need to perform queries that join data in a shard with relatively static
information.

Minimizing Network Latency
If your database has a large number of users that are dispersed geographically, you can also use sharding to minimize the
latency of data access. In many cases, the data that users require follows a pattern that mirrors the location of the users
themselves. For example, in the Shopping application, customers located in the Western United States are more likely to query
customer and order information for that same region (their own data and orders). Therefore, it would be beneficial to store that

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 23/41

data in a shard that is physically located in the same region and reduce the distance that it has to travel. Data stored in other
shards will still be available, but it may take longer to retrieve.

Note:

Using sharding to minimize latency requires that the application knows in which shard to find the data. If you are using an
RDBMS that implements federation, the application will need to connect to the federation root to discover this information,
and this will increase the latency of requests. In this case, it may be more beneficial to incorporate the sharding logic in the
application and revert to the Shared Nothing pattern.

Not all data will fit this pattern. In the Shopping application, all customers are likely to query the same category, subcategory,
and product information regardless of their location. One solution to reduce the latency of data access for this information is to
replicate it in each region. As data changes, these changes will need to be propagated to each replica. This approach is most
beneficial for relatively static data, because updates will be infrequent and the resulting overhead of synchronizing multiple
copies of data is small. For data that does change relatively often, you can still maintain multiple replicas, but you should
consider whether all users require up to the minute consistency of this data. If not, then you can implement synchronization as a
periodic process that occurs every few hours.

Poe says:

If you are using Windows Azure SQL Database to store your data in the cloud, you can replicate tables and
synchronize databases by using SQL Data Sync.

Appendix A, "Replicating, Distributing, and Synchronizing Data" in the guide
"http://msdn.microsoft.com/library/hh871440.aspxBuilding Hybrid Applications in the Cloud on Windows Azure,"
available on MSDN contains guidance on using Windows Azure SQL Database and SQL Data Synchronization to
distribute and replicate data held in SQL Server databases.

Improving Availability
In many systems, the database is a critical part of the infrastructure, and the system may not function correctly (or at all) if the
database is not available. A database might be unavailable for a number of reasons, but the most common causes include:

Failure of the server hosting the database. Hardware failure is always a possibility, and if you need to ensure that your
database is available at all times you may need to implement some form of hardware redundancy. Alternatively, you can
arrange to maintain a copy of the data on another server, but this will require that the second server is kept up to date. If
data changes frequently, this may require implementing a failover solution that duplicates the effects of all transactions as
they occur.

SQL Server supports failover clusters that can provide high availability by maintaining multiple local instances of
SQL Server that contain the same data. For more information, review the section "AlwaysOn Failover Cluster
Instances (SQL Server)" in Books Online for SQL Server 2012.

https://msdn.microsoft.com/library/hh871440.aspx
https://msdn.microsoft.com/library/ms189134.aspx

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 24/41

If you have implemented a distributed database solution as described in the section "Minimizing Network Latency," a second
possibility is to replicate the data in all shards as well as the common data required by all users. To retain the performance of
operations that create, update, and delete data it may not be possible to implement up to the minute transactional integrity
across all replicas, so you may need to implement additional infrastructure such as reliable message queues to ensure that
updates are not lost and that all replicas become consistent eventually. Appendix A in the guide "Building Hybrid Applications in
the Cloud on Windows Azure" shows how you can achieve this by using Windows Azure.

Loss of connectivity to the server hosting the database. All networks, whether they are wired or wireless, are prone to
failure. Even if you implement hardware redundancy, if the database server constitutes a single node then you have the
potential for loss of connectivity. Replicating the database across multiple nodes can mitigate this possibility, but your
application must be able to quickly switch to a node that has connectivity. This may necessitate incorporating additional
logic into your application to detect whether a it can connect to the database, or you might need to reconfigure the
application manually to reference a different node.

Poe says:

Distributed databases exhibit behavior that can be summarized by the CAP theorem. This theorem states that it is
impossible for a distributed system to guarantee data consistency (all nodes see exactly the same data at the
same time), availability (all requests will receive a response), and partition tolerance (the system can continue to
function even if connectivity to part of it is lost) at the same time. You can only ever meet two of these
guarantees. Many designers choose to compromise on data consistency and implement BASE semantics; updates
may take their time to propagate across all sites in the system, but data will eventually become consistent at
every site.

Overloading the server hosting the database, causing requests to timeout. If a database server is heavily loaded, it
may be slow in responding to requests, resulting in timeout failures, other errors, or just poor performance in your
application while it waits for a response. As with loss of connectivity, a common solution is to replicate data and fall back
to a responsive server.

If you are using Windows Azure to host services as part of your solution, you can use Windows Azure Traffic
Manager to manage connectivity to these services and transparently redirect requests if an instance of a service
should fail or a server become unresponsive. For more information, read Appendix E, "Maximizing Scalability,
Availability, and Performance" in the guide "Building Hybrid Applications in the Cloud on Windows Azure."

Implementing a Relational Database in the Cloud by Using Microsoft
Windows Azure
Cloud-based database servers are becoming increasingly popular because they remove the need for an organization to maintain
its own infrastructure for hosting a database. They can prove extremely cost effective, especially if they offer elasticity that can
enable a system to scale quickly and easily as the number of requests and volume of work increases. Windows Azure implements
a range of services that can help you to build just such a solution, and you have at least two options that you can choose for
hosting a database:

Use Windows Azure SQL Database. This is a version of SQL Server designed specifically to run in the cloud. It offers
compatibility with SQL Server running on-premises within an organization, and you can use many of the same tools to
connect to it and manage data. Windows Azure SQL Database provides enterprise-class availability, scalability, and
security, with the benefits of built-in data protection and self-healing.

https://msdn.microsoft.com/en-us/library/hh868047.aspx
https://msdn.microsoft.com/en-us/library/hh868048.aspx

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 25/41

Create a virtual machine to run your database server, and then deploy this virtual machine to the cloud. This
approach gives you complete flexibility and control over the database management system, and you can implement
almost any RDBMS solution, whether it is SQL Server 2012, MySQL, or another technology.

Bharath says:

If you need to run a database management system other than SQL Server, you can create a virtual machine that
hosts this software and deploy it to Windows Azure.

Each of these strategies has its own advantages and disadvantages over the other. The following list summarizes some of the key
points:

Pricing. The cost of running a virtual machine depends on the number of resources it requires, and is charged on an
hourly basis. Windows Azure SQL Database is priced according to the number of databases and the size of each database.
Scalability. If you run SQL Server in a virtual machine, you can scale up to the maximum size allowed for a virtual
machine; 8 virtual CPUs, 14GB of RAM, 16TB of disk storage, and 800MB/s bandwidth.
If you are using Windows Azure SQL Database, the environment in which the database server runs is controlled by the
datacenter. The host environment may be shared with other database servers, and the datacenter tries to balance
resource usage so that no single application or database server dominates any resource, throttling a server if necessary to
ensure fairness. The maximum size of a single database is 150GB. However, you can create multiple databases on a single
server, and you can also create additional servers. Windows Azure SQL Database implements SQL Database Federation,
providing a transparent sharding mechanism that enables you to scale out across multiple servers very easily.

Note:

You can find detailed information describing federation with Windows Azure SQL Database at "Federations in Windows
Azure SQL Database," on MSDN.

Availability. SQL Server running in a virtual machine supports SQL Server AlwaysOn availability groups, read-only
secondaries, scalable shared databases, peer-to-peer replication, distributed partitioned views, and data-dependent
routing. Additionally, the virtual machine itself is guaranteed to be available 99.9% of the time, although this guarantee
does not include the database management system running in the virtual machine.
Windows Azure SQL Database comes with the same high availability guarantees (99.9% uptime) as a Windows Azure
virtual machine. When you create a new database, Windows Azure SQL Database transparently implements multiple
replicas across additional nodes. If the primary site fails, all requests are automatically directed to a secondary node with
no application downtime. This feature comes at no extra charge.

Bharath says:

Windows Azure SQL Database maintains multiple copies of a database running on different servers. If the primary
server fails, then all requests are transparently switched to another server.

https://msdn.microsoft.com/en-us/library/windowsazure/hh597452.aspx

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 26/41

Compatibility. If you are running SQL Server in a virtual machine, you have complete access to the tools and other
features provided by the software, such as SQL Server Integration Services. Similarly, you can choose to run a completely
different database management system in your virtual machine. The virtual machine itself can be running Windows, or
Linux, and you have full control over any other software running in the virtual machine that integrates with your database
management system.
If you are using Windows Azure SQL Database, you have access to a large but specific subset of the functionality available
in the complete SQL Server product. For example, Windows Azure SQL Database does not support tables without
clustered indexes.

Note:

A complete list of the features available in Windows Azure SQL Database, is available at "General Guidelines and
Limitations (Windows Azure SQL Database)," on MSDN.

Administration and configuration. If you are using a virtual machine to host your database server, you have complete
control over the database software, but you are responsible for installing, configuring, managing, and maintaining this
software.
If you are using Windows Azure SQL Database, the datacenter configures and manages the software on your behalf, but
you have little or no control over any specific customizations that you might require.

Security and Connectivity. You can easily integrate a Windows Azure virtual machine into your own corporate network
by using Windows Azure Virtual Network. This feature provides a safe mechanism that can make the virtual machine an
authenticated member of your corporate network and participate in a Windows domain. Services such as the database
management system running on the virtual machine can authenticate requests by using Windows Authentication.
Windows Azure SQL Database runs in a shared environment that does not integrate directly with your on-premises
servers. Windows Authentication is not supported. Additionally, there are restrictions on the logins that you can use (you
cannot log in as sa, guest, or administrator, for example).

The blog post "Data Series: SQL Server in Windows Azure Virtual Machine vs. SQL Database" contains more
information comparing the features of SQL Server running in a virtual machine with Windows Azure SQL Database.
The blog post "Choosing between SQL Server in Windows Azure VM & Windows Azure SQL Database," describes
how you can select whether to use SQL Server running in a virtual machine or Windows Azure SQL Database to
implement your database.

Why Adventure Works Used Windows Azure SQL Database for the
Shopping Application
The designers at Adventure Works deployed the database in the cloud by using Windows Azure SQL Database for the following
reasons:

The database had to be accessible to the Shopping application, which is hosted using Windows Azure. For security
reasons, the IT services team at Adventure Works was unwilling to open up external access to SQL Server running on
Adventure Works own in-house infrastructure.
Windows Azure SQL Database provides the scalability, elasticity, and connectivity required to support an unpredictable
volume of requests from anywhere in the world.
Microsoft guarantees that a database implemented by using Windows Azure SQL Database will be available 99.9% of the
time. This is important because if the database is unavailable then customers cannot place orders.

https://msdn.microsoft.com/library/windowsazure/ee336245.aspx
http://blogs.msdn.com/b/windowsazure/archive/2012/06/26/data-series-sql-server-in-windows-azure-virtual-machine-vs-sql-database.aspx
http://blogs.msdn.com/b/windowsazure/archive/2013/02/14/choosing-between-sql-server-in-windows-azure-vm-amp-windows-azure-sql-database.aspx

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 27/41

The developers at Adventure Works also considered using a series of dedicated virtual machines running SQL Server in the cloud.
However, they did not require the infrastructure isolation or level of configuration control available by following this approach. In
fact, they felt that running SQL Server in a virtual machine might place too much of a burden on the in-house administrators who
would be responsible for monitoring and maintaining the health of a collection of RDBMSs.

To reduce latency for customers running the Shopping application, Adventure Works deployed an instance of the application to
multiple Windows Azure datacenters, and configured Windows Azure Traffic Manager to route users to the nearest instance of
the Shopping application. Each datacenter also hosts an instance of the database, and the application simply uses the local
instance of the database to query customer details and store information about orders. The designers configured Windows Azure
SQL Data Sync to synchronize data updates on a daily basis so information about all orders eventually propagates across all sites.
One site was selected to act as the synchronization hub, and the others are members that synchronize with this hub. In the event
of failure or loss of connectivity to the hub, it is possible to reconfigure Windows Azure SQL Data Sync and select a different
synchronization hub, or even force a manual synchronization, without modifying any application code.

The warehousing and dispatch systems inside Adventure Works use its own SQL Server database running on-premises within the
datacenter of the organization. This database was included as a member database in a separate synchronization group that
synchronizes with the hub every hour, and all orders placed by customers are transmitted to this database by the synchronization
process.

The sample application provided with this guide does not implement replication by default, but you can configure
this option manually. For more information about Windows Azure SQL Data Sync, see the "SQL Data Sync" topic on
MSDN.

Figure 14 shows the high-level structure of this solution.

https://msdn.microsoft.com/library/hh456371.aspx

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 28/41

Figure 14 - How Adventure Works deployed the databases and synchronize the data

Accessing Data in a Relational Database from an Application
You need to give careful attention to the code that you write to access the data in a relational database. This code can have an
impact on the performance, not just of a single instance of the application, but on the system as a whole, especially if you
implement transactional exchanges with the database in a suboptimal manner. Additionally, you should avoid tying the structure
of your code too closely to the database technology otherwise you may be faced with making major changes to your application
should you need to switch to a different type of data store.

Connecting to a Relational Database
An application typically interacts with a relational database by using SQL commands. However, SQL is a language rather than an
API or network protocol, so RDBMS vendors provide tools and libraries that enable an application to create SQL commands and
package them up in a vendor-specific format that can be transported from the application to the database server. The database
server processes the commands, performs the appropriate work, and then sends results back by using another vendor-specific

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 29/41

format. The application uses the vendor-provided library to unpack the response and implement the necessary logic to process
this response.

The tools and libraries available to an application are dependent on the RDBMS that the system is using. For example, Microsoft
provides ActiveX Data Objects (ADO.NET), which enable an application built using the .NET Framework to connect directly to
Microsoft SQL Server. Other vendors supply their own libraries. However, ADO.NET implements a layered model that decouples
the API exposed to applications from the underlying format of the data that is transported to the database server. This design
has enabled Microsoft and other third-party vendors to develop database drivers that enable applications to connect to different
RDBMSs through ADO.NET.

Note:

The original ActiveX Data Objects library predates the .NET Framework. This library is still available if you are building
applications that do not use the .NET Framework.

There have been attempts to develop a standard library to enable applications to have a degree of independence from the
RDBMS, Open Database Connectivity (ODBC) which was first proposed by the SQL Access Group in 1992 being a prime example.
ADO.NET supports ODBC, enabling you to build applications that can connect to any RDBMS that has an ODBC driver.

Markus says:

Despite its age, ODBC is an important data integration technology. You can use ODBC to connect to an RDBMS
from Microsoft Word if you need to include information from a database in a document, for example.
Additionally, ODBC drivers are available for several data sources that are not RDBMSs. For example, Microsoft
supplies an ODBC driver for Excel, which enables you to retrieve data from an Excel spreadsheet by performing
SQL queries.

You can also use the patterns & practices Data Access Block (part of Enterprise Library) to perform common database operations
by writing database-neutral code. The purpose of the Data Access Block is to abstract the details of the RDBMS that you are
using from the code that interacts with the database. The Data Access Block enables you to switch to a different RDBMS and
minimize the impact that such a change might have on your code. You need to provide configuration information that specifies
which RDBMS to connect to, and parameters that contain additional connection information, but other than that if you are
careful you can build applications that have minimal dependencies on the database technologies that they use.

You can find more information about the latest version of Enterprise Library on MSDN.

Abstracting the Database Structure from Application Code
A relational database stores data as a collection of tables. However, a typical application processes data in the form of entity
objects. The data for an entity object might be constructed from one or more rows in one or more tables in the database. In an
application, the business logic that displays or manipulates an object should be independent of the format of the data for that
object in the database so that you can modify and optimize the structure of the database without affecting the code in the
application, and vice versa.

Using an Object-Relational Mapping Layer

https://msdn.microsoft.com/en-us/library/dn169621.aspx

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 30/41

Libraries such as ADO.NET, ODBC, and the Data Access Block typically provide access to data in a structure that mirrors its tabular
form in the database. To decouple this structure from the object model required by an application, you can implement an object-
relational mapping layer, or ORM. The purpose of an ORM is to act as an abstraction of the underlying database. The application
creates and uses objects, and the ORM exposes methods that can take these objects and use them to generate relational CRUD
(create, retrieve, update, and delete) operations, which it then sends to the database server by using a suitable database driver.
Tabular data returned by the database is converted into a set of objects by the ORM. If the structure of the database changes,
you modify the mappings implemented by the ORM, but leave the business logic in the application unchanged.

ORMs follow the Data Mapper pattern to move data between objects and the database, but keep them independent of each
other. Data Mapper is a actually a meta-pattern that comprises a number of other lower-level patterns that ORMs implement,
typically including:

Metadata Mapping. An ORM uses this pattern to define the mappings between in-memory objects and fields in
database tables. The ORM can then use these mappings to generate code that inserts, updates, and deletes information in
the database based on modifications that an application makes to the in-memory objects.
Interpreter. The Interpreter pattern is used to convert application-specific code that retrieves data into the appropriate
SQL SELECT statements that the RDBMS understands. ORMs based on the .NET Framework frequently use this pattern to
convert LINQ queries over entity collections into the corresponding SQL requests.
Unit of Work. An ORM typically uses this pattern to maintain a list of changes (insert, update, and delete operations) over
in-memory objects, and then batch these operations up into transactions comprising one or more SQL operations
(generated by using the metadata mapping) to save the changes. If the transaction fails, the reason for the failure is
captured and the state of the objects in-memory is preserved. The application can use this information to rectify the
failure and attempt to save the changes again.

Microsoft provides the Entity Framework as an ORM for .NET Framework applications. Other popular ORMs available for the
Microsoft platform include NHibernate and nHydrate.

Using the Entity Framework
The Entity Framework is integrated into Visual Studio, and it enables you to build applications that can interact with RDBMSs
from a variety of vendors, including Oracle, IBM, Sybase, and MySQL. You can work with the Entity Framework by following a
database-first or code-first approach, depending on whether you have an existing database that you wish to use, or you want to
generate a database schema from an existing set of objects, as follows:

If you have an existing database, the Entity Framework can generate an object model that directly mirrors the structure of
the database. Rows in tables are mapped to collections of objects, and relationships between tables are implemented as
properties and validation logic. You can also create mappings to data returned by stored procedures and views. Visual
Studio 2012 provides the ADO.NET Entity Data Model template to help you perform this task. This template runs a wizard
that enables you to connect to the database, and select the tables, views, and stored procedures that your application will
use. The wizard constructs an entity model and can generate a collection of entity classes that correspond to each of the
tables and views that you selected. You can use the Entity Model Designer to amend this model, add or remove tables,
modify the relationships between tables, and update the generated code. Figure 15 shows an example:

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 31/41

Figure 15 - The Entity Model Designer in Visual Studio 2012
You can also reverse engineer a database from your code. You can generate a SQL script that will create the tables and
relationships that correspond to the entities and mappings in the entity model.

Note:

In the Entity Framework version 5.0, the Entity Data Model Wizard does not generate the entity classes by default. You
must set the Code Generation Property of the entity model to Default by using the Entity Model Designer.

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 32/41

If you have an existing object model, the Entity Framework can generate a new database schema from the types in this
model. The Entity Framework includes attributes that enable you to annotate classes and indicate which fields constitute
primary and foreign keys, and the relationships between objects. The Entity Framework also includes a set of attributes
that you can use to specify validation rules for data (whether a field allows null values, the maximum length of data in a
field, and so on).
If you don't have access to the source code for the classes in the object model, or you do not wish to annotate them with
Entity Framework attributes, you can use the Fluent API to specify how objects map to entities, how to validate the
properties of entities, and how to specify the relationships between entities.

Markus says:

Using the Fluent API decouples the classes in your object model from the Entity Framework. You can quickly
switch to a different ORM or implement an alternative mapping strategy (for example, if you need to change to a
different type of database) without modifying the classes in your object model.

In the Entity Framework, you interact with the database through a Context object. The context object provides the connection to
the database and implements the logic perform CRUD operations on the data in the database. The context object also performs
the mapping between the object model of your application and the tables defined in the database. To achieve this, the context
object exposes each table as a collection of objects either using the types that you specified (if you are following a code-first
approach), or the types that the Entity Framework Data Model wizard generated from the database (if you are following a
database-first approach).

To retrieve objects from the database, you create an instance of the context object, and then iterate through the corresponding
collection. You can limit the volume of data fetched and specify filters to apply to the data in the form of LINQ to SQL queries.
Behind the scenes, the context object generates an SQL SELECT query a WHERE clause that includes the appropriate conditions.

You can find detailed information about LINQ to SQL on MSDN.

Each collection provides Add, and Remove methods that an application can use to add an instance of an entity object to an
entity collection, and remove an object from an entity collection. You update an object in an entity collection simply by
modifying its property values. The context object tracks all changes made to the objects held in an entity collection. Any new
objects that you add to a collection, objects that you remove from a collection, or changes that you make to objects, are sent to
the database as SQL INSERT, DELETE, and UPDATE statements when you execute the SaveChanges method of the context
object. The SaveChanges method performs these SQL operations as a transaction, so they will either all be applied, or if an error
occurs they will all be undone. If an error occurs, you can write code to determine the cause of the error, correct it, and call
SaveChanges again. If you have made changes to objects in other entity collections that are associated with the same context
object, these changes will also be saved as part of the same transaction.

The Entity Framework abstracts the details of the connection to the database by using a configurable connection string, typically
stored in the configuration file of the application. This string specifies the information needed to locate and access the database,
together with the RDBMS-specific driver (or provider) to use. The following example shows a typical connection string for
accessing the AdventureWorks2012 database running under Visual Studio LocalDB on the local machine (LocalDB is a
development version of SQL Server provided with Visual Studio 2012). The System.Data.SqlClient provider implements the
connection and communication logic for SQL Server.

<connectionStrings>
 ...

XML

https://msdn.microsoft.com/library/bb425822.aspx

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 33/41

If you need to connect to a different database but continue to use the same RDBMS provider (for example, if you wish to change
from using SQL Server Express on your local computer to Windows Azure SQL Database in the cloud), you can change the
parameters in the name property of the connection string. If you need to switch to a different RDBMS, install the assembly that
implements the provider code for this RDBMS and then change the providerName property of the connection string to reference
this assembly.

For detailed information about the Entity Framework, see "Entity Framework" page in the Data Developer Center,
on MSDN.

Using a Micro-ORM
ORMs implement a comprehensive mechanism for mapping tables in a database to collections of objects and tracking changes
to these objects, but they can generate inefficient code if the developer implementing the mapping is not careful. For example, it
is very easy to use an ORM to implement a mapping layer that retrieves all the columns for each row from a wide table, even if
your code only requires the data from one or two of these columns. Micro-ORMs take a more minimalist approach, enabling you
to fine tune the SQL operations that your code requires and improve efficiency. The purpose of a micro-ORM is simply to provide
a fast, lightweight mapping between objects and entities.

A micro-ORM typically runs an SQL query, and converts the rows in the result to a collection of objects. You must define the
types used to create these objects yourself. To perform create, update, and delete operations you compose the appropriate
INSERT, UPDATE, and DELETE SQL statements in your application and execute them through the micro-ORM.

Note:

The primary advantage of a micro-ORM compared to an ORM is speed. A micro-ORM acts as a very lightweight wrapper
around a set of SQL statements and does not attempt to track the state of objects that it retrieves. It does not implement the
functionality typically provided by the Metadata Mapper, Interpreter, or Unit of Work patterns. The main disadvantage is that
your application has to do this work itself, and you have to write the code!

The following example is based on Dapper, a popular micro-ORM that you can add to a Visual Studio 2012 project by using
NuGet (install the "Dapper dot net" package). The example uses the SQL Server ADO.NET provider to connect to the
AdventureWorks2012 database and retrieve product information. The Dapper library adds the generic Query<T> extension
method to the connection class. The Query method takes a string containing an SQL SELECT statement, and returns an
IEnumerable<T> result. The type parameter, T, specifies the type to which the Query method maps each row returned; in this
case, it is the local Address class. Columns in the SELECT statement run by the query are mapped to fields with the same name
in this class:

 <add name="AdventureWorksContext" connectionString="Data Source=(localdb)\V11.0;Initial
Catalog=AdventureWorks2012; Integrated Security=SSPI" providerName="System.Data.SqlClient" />
</connectionStrings>

public class Address
{
 public int AddressId { get; set; }
 public string AddressLine1 { get; set; }
 public string AddressLine2 { get; set; }
 public string City { get; set; }

C#

https://msdn.microsoft.com/en-us/data/ef.aspx

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 34/41

Markus says:

The Data Access Block provides the SQL String Accessor, which also acts as a micro-ORM.

How the Shopping Application Accesses the SQL Server Database
In the Shopping application, the MvcWebApi web service receives REST requests sent from the user interface web application,
validates these requests, and then converts them into the corresponding CRUD operations against the appropriate database. All
incoming REST requests are routed to a controller based on the URI that the client application specifies. The controllers that
handle the business logic for registering customers, logging in, and placing orders, indirectly use the Microsoft Entity Framework
5.0 to connect to the Adventure Works database and retrieve, create, update, and delete data. The designers implemented the
Repository pattern to minimize dependencies that the controllers have on the Entity Framework.

The purpose of the Repository pattern is to act as an intermediary between the object-relational mapping layer (implemented by
the Entity Framework) and the data mapping layer that provides the objects for the controller classes. In the Shopping
application, each repository class provides a set of APIs that enable a controller class to retrieve a database-neutral object from
the repository, modify it, and store it back in the repository. The repository class has the responsibility for converting all the
requests made by a controller into commands that it can pass to the underlying data store; in this case the Entity Framework. As
well as removing any database-specific dependencies from the business logic in the controllers, this approach provides flexibility.
If the designers decide to switch to a different data store, such as a document database, they can provide an alternative
implementation of the repository classes that expose the same APIs to the controller classes.

Markus says:

Avoid building dependencies on a specific data access technology into the business logic of an application. Using
the Repository pattern can help to reduce the chances of this occurring.

 public string PostalCode { get; set; }
}

...
string connectionString =
 @"Data Source=(local)\SQLExpress;Initial Catalog=AdventureWorks2012; Integrated
Security=SSPI";

using (System.Data.SqlClient.SqlConnection connection =
 new System.Data.SqlClient.SqlConnection(connectionString))
{
 connection.Open();
 var addresses = connection.Query<Address>(
 @"SELECT AddressId, AddressLine1, AddressLine2, City, PostalCode
 FROM Person.Address");

foreach(var a in addresses)
{
 // Process each row returned
}
...

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 35/41

Retrieving Data from the SQL Server Database
The application implements four repository classes, PersonRepository, SalesOrderRepository, InventoryProductRepository,
and StateProvinceRepository that it uses to retrieve and manage customer, order, product inventory, and address information
in the SQL Server database. There is not a one-to-one relationship between the repository classes and the tables in the database
because some repository classes handle data from more than one table.

Note:

Each repository class handles the logic for a specific and discrete set of business data, sometimes referred to as a Bounded
Context. For example, the SalesOrderRepository handles all the functionality associated with placing and maintaining an
order, while the PersonRepository is focused on the logic for managing the details of customers. This approach isolates the
data access functionality for sets of business operations and helps to reduce the impact that a change in the implementation
of one repository class may have on the others.

The methods in each repository class receive and return database-neutral domain objects to the controllers that call them.

The section "Decoupling Entities from the Data Access Technology" in Appendix A, "How the MvcWebApi Web
Service Works" describes how the repository classes use AutoMapper to create database-neutral domain objects
from the database-specific entity objects.

The repository classes connect to the database by using context objects (described later in this section). The following code
example shows how methods in the PersonRepository class fetch Person, information from the database, either by specifying
the ID of the person or their email address, reformat this data, and then return it to a controller:

public class PersonRepository : BaseRepository, IPersonRepository
{
 public DE.Person GetPerson(int personId)
 {
 using (var context = new PersonContext())
 {
 Person person = null;

 using (var transactionScope = this.GetTransactionScope())
 {
 person = context.Persons
 .Include(p => p.Addresses)
 .Include(p => p.CreditCards)
 .Include(p => p.EmailAddresses)
 .Include(p => p.Password)
 .SingleOrDefault(p => p.BusinessEntityId == personId);

C#

https://msdn.microsoft.com/en-us/library/dn313276.aspx#DecoupEntitiesDataAccess

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 36/41

Note:

All read operations are performed within a TransactionScope object that specifies the ReadCommitted isolation level. This

 transactionScope.Complete();
 }

 if (person == null)
 {
 return null;
 }

 var result = new DE.Person();
 var addresses = new List<DE.Address>();
 var creditCards = new List<DE.CreditCard>();

 Mapper.Map(person.Addresses, addresses);
 Mapper.Map(person.CreditCards, creditCards);
 Mapper.Map(person, result);

 addresses.ForEach(a => result.AddAddress(a));
 creditCards.ForEach(c => result.AddCreditCard(c));
 person.EmailAddresses.ToList().ForEach(
 e => result.AddEmailAddress(e.EmailAddress));

 return result;
 }
 }

 public DE.Person GetPersonByEmail(string emailAddress)
 {
 using (var context = new PersonContext())
 {
 PersonEmailAddress personEmail = null;
 using (var transactionScope = this.GetTransactionScope())
 {
 personEmail = context.EmailAddresses
 .Include(pe => pe.Person)
 .FirstOrDefault(ea => ea.EmailAddress.Equals(emailAddress));

 transactionScope.Complete();
 }

 if (personEmail == null)
 {
 return null;
 }

 var result = new DE.Person();
 Mapper.Map(personEmail.Person, result);
 return result;
 }
 }
 ...
}

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 37/41

isolation level ensures that the data retrieved from the database is transactionally consistent. The BaseRepository class from
which the repository classes inherit provides the GetTransactionScope method that creates this TransactionScope object.

The AccountController class creates an instance of the PersonRepository class to retrieve and manage the details of customer
accounts. The methods in this controller call the appropriate methods in a PersonRepository object to retrieve the details for a
customer. For example, the Get method of the AccountController class invokes the GetPerson method of a PersonRepository
object to fetch the details of a customer, as highlighted in the following code sample:

As a second example of how the system queries information in the SQL Server database, when the Shopping application creates
a new order, the Post method in the OrdersController class calls the InventoryAndPriceCheck method in the
InventoryService class to verify the price of items in the order and also check whether Adventure Works still stocks these items.

Note:

The InventoryService class simulates part of the functionality normally exposed by the warehousing and inventory systems
inside Adventure Works. It is provided for illustrative purposes only.

The InventoryAndPriceCheck method interacts with the database through an InventoryProductRepository object to check the
price of an item. The following code highlights the relevant parts of the InventoryAndPriceCheck method:

public class AccountController : ApiController
{
 private IPersonRepository personRepository;

 public AccountController(IPersonRepository personRepository, ...)
 {
 this.personRepository = personRepository;
 ...
 }
 ...
 public HttpResponseMessage Get(string id)
 {
 Guid guid;
 if (!Guid.TryParse(id, out guid))
 {
 ...
 }

 var person = this.personRepository.GetPerson(guid);
 ...
 }
 ...
}

public class InventoryService : IInventoryService
{

C#

C#

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 38/41

Note:

The controller classes and the InventoryService class use the Unity Application Block to instantiate the repository objects.
The code in each controller class references a repository by using an interface, such as IInventoryProductRepository in the
example code shown above. The developers configured the Unity Application Block to inject a reference to the
InventoryProductRepository class when this interface is referenced. The section "Instantiating Repository Objects" in
Appendix A provides more information.

Markus says:

You can download the Unity Application Block from MSDN, or you can add it to a Visual Studio 2012 project by
using NuGet.

The repository classes connect to the SQL Server database by using a set of custom Entity Framework 5.0 context classes named
PersonContext, SalesOrderContext, InventoryProductContext, and StateProvinceContext. These custom context classes
expose the data from the database through groups of public properties that contain collections of entity objects.

For detailed information on how the repository classes connect to SQL Server through the Entity Framework by
using the context classes, see the section "How the Entity Framework Repository Classes Work" in Appendix A.

To help making unit testing easier, the developers at Adventure Works followed a code-first approach and the entity classes are
essentially stand-alone types that do not directly reference the Entity Framework. Instead, the context classes use the Entity
Framework Fluent API to map the entity classes to tables in the SQL Server database. For example, the Person entity class
referenced by the PersonContext class looks like this:

 ...
 private readonly IInventoryProductRepository inventoryProductRepository;

 ...
 public bool InventoryAndPriceCheck(ShoppingCart shoppingCart)
 {
 ...
 foreach (var shoppingCartItem in shoppingCart.ShoppingCartItems)
 {
 var inventoryProduct = this.inventoryProductRepository.
 GetInventoryProduct(shoppingCartItem.ProductId);

 ...
 }
 ...
 }
 ...
}

https://msdn.microsoft.com/en-us/library/dn313276.aspx#InstanRepositoryObjects
https://msdn.microsoft.com/en-us/library/dn170416.aspx
https://msdn.microsoft.com/en-us/library/dn313276.aspx#HowEFRepositoryWork

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 39/41

The PersonContext class maps this class to the Person table in the Person schema in the SQL Server database by creating an
instance of the PersonMap class. This code also configures relationships with other objects, such as the PersonCreditCard class,
that mirror the relationships in the database:

Inserting, Updating, and Deleting Data in the SQL Server Database
The repository classes that insert, update, and delete data use the SaveChanges method of the Entity Framework to perform
these operations. For example, the SalesOrderRepository class exposes the SaveOrder method that the OrdersController uses
to save the details of a new order. This method takes an Order domain object that contains the details of the order and uses the

public class Person : ...
{
 public string PersonType { get; set; }
 public bool NameStyle { get; set; }
 public string Title { get; set; }
 public string FirstName { get; set; }
 public string MiddleName { get; set; }
 public string LastName { get; set; }
 public string Suffix { get; set; }
 public int EmailPromotion { get; set; }
 public Guid PersonGuid { get; set; }
 public virtual PersonPassword Password { get; set; }
 public virtual ICollection<PersonEmailAddress> EmailAddresses { get; set; }
 public virtual ICollection<PersonBusinessEntityAddress> Addresses {get; set;}
 public virtual ICollection<PersonCreditCard> CreditCards { get; set; }
}

public class PersonMap : EntityTypeConfiguration<Person>
{
 public PersonMap()
 : base()
 {
 this.ToTable("Person", "Person");
 this.HasKey(p => p.BusinessEntityId);

 this.HasRequired(p => p.Password)
 .WithRequiredPrincipal(p => p.Person)
 .WillCascadeOnDelete(true);

 this.HasMany(p => p.EmailAddresses)
 .WithRequired(e => e.Person)
 .WillCascadeOnDelete(true);

 this.HasMany(p => p.CreditCards)
 .WithMany(c => c.Persons)
 .Map(map => map.ToTable("PersonCreditCard", "Sales")
 .MapLeftKey("BusinessEntityID")
 .MapRightKey("CreditCardID"));
 }
}

C#

C#

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 40/41

information in this object to populate a SalesOrderHeader object (by using AutoMapper). The method then adds this object to
the SalesOrderHeaders collection in the context object before calling SaveChanges. The data is saved to the database within
the scope of a transaction that uses the ReadCommitted isolation level (the GetTransactionScope method inherited from the
BaseRepository class creates this transaction scope):

Appendix A, "How the MvcWebApi Web Service Works," contains more detailed information on the structure of the
web service and how the web service implements the Repository pattern to provide access to the SQL Server
database through the Entity Framework.

Summary
This chapter has described the primary concerns that you should consider when you store the data for an application in a
relational database. In this chapter, you saw how to support highvolume transaction throughput by normalizing a database and
ensuring that transactions do not lock resources for an extended period. You also saw how to design a database to support
query operations efficiently. However, in the real world, a minority of systems are OLTP-only or query-only. Most applications
require databases that support a mixture of transactional and query operations. The key is to balance the design of the database
to hit the sweet spot that maximizes performance for the majority of the time.

Scalability, availability, and performance are also important issues for any commercial system. Many RDBMSs include
technologies that enable you to partition data and spread the load across multiple servers. In a system that supports
geographically dispersed users, you can use this same strategy to place the data that a user commonly requires close to that
user, reducing the latency of the application and improving the average response time of the system.

This chapter also discussed the decisions that Adventure Works made, why they decided to structure the data for customers and
orders in the way that they did, and why they chose to store the database in the cloud by using Windows Azure SQL Database.
This chapter also summarized the way in which the application connects to the database by using the Entity Framework, and how
it uses the Repository pattern to abstract the details of the Entity Framework from the business logic of the system.

While the relational model has its undoubted strengths, it also has limitations, the most common being it can be difficult to
handle non-relational data. Most modern RDBMS solutions have had to add non-standard features to optimize the way in which
non-relational data is stored, and extend the way in which relationships that involve this data are handled. In many cases, it may

public class SalesOrderRepository : BaseRepository, ISalesOrderRepository
{
 public DE.Order SaveOrder(DE.Order order)
 {
 var salesOrderHeader = new SalesOrderHeader();
 Mapper.Map(order, salesOrderHeader);

 using (var transactionScope = this.GetTransactionScope())
 {
 context.SalesOrderHeaders.Add(salesOrderHeader);
 context.SaveChanges();

 transactionScope.Complete();
 }

 return order;
 }
 ...
}

C#

https://msdn.microsoft.com/en-us/library/dn313276.aspx

1/21/2018 3 - Implementing a Relational Database

https://msdn.microsoft.com/en-us/library/dn313277(d=printer).aspx 41/41

be better to store non-relational data in a database that does not enforce a relational structure. Additionally, the inherent nature
of relational databases can limit their scalability. This chapter has looked at some of the ways in which modern RDBMSs address
this issue, but sometimes it is better to use a data storage technology that is naturally scalable. The remaining chapters in this
book look at some common options.

More Information
All links in this book are accessible from the book's online bibliography on MSDN at: http://msdn.microsoft.com/en-
us/library/dn320459.aspx.

The "Normalization" page describing the benefits of normalizing a SQL Server database is available on MSDN.
The "DML Triggers" page describing how to implement database triggers in SQL Server 2012 is available on MSDN.
The "Stored Procedures (Database Engine)" page describing the advantages of using stored procedures in SQL Server 2012
is available on MSDN.
The page "Online Transaction Processing vs. Decision Support", available on MSDN, summarizes common design decisions
for meeting the requirements of databases that support OLTP and DSS operations.
You can download the guide "Building Hybrid Applications in the Cloud on Windows Azure" from MSDN.
The "SQL Server Integration Services" section in Microsoft SQL Server 2012 Books Online, is available on MSDN.
You can find detailed information on SQL Server indexes in Books Online for SQL Server 2012. The "Indexes" section is
available on MSDN.
The "Partitioned Tables and Indexes" section of Books Online for SQL Server 2012 is available on MSDN.
You can find the page "Query Processing Enhancements on Partitioned Tables and Indexes" describing how SQL Server
queries can take advantage of horizontal partitioning at.
The "Top 10 Best Practices for Building a Large Scale Relational Data Warehouse" page that summarizes best practices for
building query intensive SQL Server databases is available on the SQLCAT web site.
The section "AlwaysOn Failover Cluster Instances (SQL Server)" in Books Online for SQL Server 2012.
The Windows Azure calculator is available online.
The page "Federations in Windows Azure SQL Database," describing how to use federations to scale out a database, is
available on MSDN.
You can find the "General Guidelines and Limitations (Windows Azure SQL Database)" page on MSDN.
The article "Data Series: SQL Server in Windows Azure Virtual Machine vs. SQL Database" is available on the MSDN blogs.
The article "Choosing between SQL Server in Windows Azure VM & Windows Azure SQL Database" is available on the
MSDN blogs.
The "SQL Data Sync" page, which provides information about Windows Azure SQL Data Sync, is available on MSDN.
Information about the Microsoft Enterprise Library is available on MSDN at http://msdn.com/entlib.
You can read about LINQ to SQL on the "LINQ to SQL: .NET Language-Integrated Query for Relational Data" page on
MSDN.
You can find information about the Entity Framework in the Data Developer Center, available on MSDN.
You can download the Unity Application Block from MSDN at http://msdn.com/unity.
The Repository pattern is described on MSDN.
Information about the Dapper dot net package is available on NuGet http://www.nuget.org/packages/Dapper/.

Next Topic | Previous Topic | Home | Community

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/dn320459.aspx
https://msdn.microsoft.com/library/ms191178(v=sql.105).aspx
https://msdn.microsoft.com/library/ms178110.aspx
https://msdn.microsoft.com/library/ms190782.aspx
https://msdn.microsoft.com/library/ms187669(v=sql.105).aspx
https://msdn.microsoft.com/library/hh871440.aspx
https://msdn.microsoft.com/library/ms141026.aspx
https://msdn.microsoft.com/library/ms175049.aspx
https://msdn.microsoft.com/library/ms190787.aspx
https://msdn.microsoft.com/library/ms345599.aspx
http://sqlcat.com/sqlcat/b/top10lists/archive/2008/02/06/top-10-best-practices-for-building-a-large-scale-relational-data-warehouse.aspx
https://msdn.microsoft.com/library/ms189134.aspx
http://www.windowsazure.com/en-us/pricing/calculator
https://msdn.microsoft.com/en-us/library/windowsazure/hh597452.aspx
https://msdn.microsoft.com/library/windowsazure/ee336245.aspx
http://blogs.msdn.com/b/windowsazure/archive/2012/06/26/data-series-sql-server-in-windows-azure-virtual-machine-vs-sql-database.aspx
http://blogs.msdn.com/b/windowsazure/archive/2013/02/14/choosing-between-sql-server-in-windows-azure-vm-amp-windows-azure-sql-database.aspx
https://msdn.microsoft.com/library/hh456371.aspx
http://msdn.com/entlib
http://msdn.com/entlib
https://msdn.microsoft.com/library/bb425822.aspx
https://msdn.microsoft.com/data/ef.aspx
http://msdn.com/unity
http://msdn.com/unity
https://msdn.microsoft.com/library/ff649690.aspx
http://www.nuget.org/packages/Dapper/
https://msdn.microsoft.com/en-us/library/dn313278.aspx
https://msdn.microsoft.com/en-us/library/dn313283.aspx
https://msdn.microsoft.com/en-us/library/dn271399.aspx
http://dataguidance.codeplex.com/

