
1/21/2018 Authorization and Permissions in SQL Server | Microsoft Docs

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/authorization-and-permissions-in-sql-server 1/4

Authorization and Permissions in SQL
Server
In this article

The Principle of Least Privilege

03/30/20174 minutes to readContributors          all

. The Principle of Least Privilege

2. Role-Based Permissions

3. Permissions Through Procedural Code

4. Permission Statements

5. Ownership Chains

6. Procedural Code and Ownership Chaining

7. External Resources

8. See Also

When you create database objects, you must explicitly grant permissions to make them accessible
to users. Every securable object has permissions that can be granted to a principal using
permission statements.

Developing an application using a least-privileged user account (LUA) approach is an important
part of a defensive, in-depth strategy for countering security threats. The LUA approach ensures
that users follow the principle of least privilege and always log on with limited user accounts.
Administrative tasks are broken out using fixed server roles, and the use of the  sysadmin  fixed
server role is severely restricted.

Always follow the principle of least privilege when granting permissions to database users. Grant
the minimum permissions necessary to a user or role to accomplish a given task.

Important

Developing and testing an application using the LUA approach adds a degree of difficulty to
the development process. It is easier to create objects and write code while logged on as a
system administrator or database owner than it is using a LUA account. However, developing
applications using a highly privileged account can obfuscate the impact of reduced
functionality when least privileged users attempt to run an application that requires elevated
permissions in order to function correctly. Granting excessive permissions to users in order to
reacquire lost functionality can leave your application vulnerable to attack. Designing,
developing and testing your application logged on with a LUA account enforces a disciplined
approach to security planning that eliminates unpleasant surprises and the temptation to

https://github.com/douglaslMS
https://github.com/craigg-msft
https://github.com/Mikejo5000
https://github.com/mjhoffman65
https://github.com/guardrex
https://github.com/dotnet/docs/blob/master/docs/framework/data/adonet/sql/authorization-and-permissions-in-sql-server.md
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/authorization-and-permissions-in-sql-server#the-principle-of-least-privilege
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/authorization-and-permissions-in-sql-server#role-based-permissions
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/authorization-and-permissions-in-sql-server#permissions-through-procedural-code
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/authorization-and-permissions-in-sql-server#permission-statements
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/authorization-and-permissions-in-sql-server#ownership-chains
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/authorization-and-permissions-in-sql-server#procedural-code-and-ownership-chaining
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/authorization-and-permissions-in-sql-server#external-resources
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/authorization-and-permissions-in-sql-server#see-also


1/21/2018 Authorization and Permissions in SQL Server | Microsoft Docs

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/authorization-and-permissions-in-sql-server 2/4

Role-Based Permissions

Permissions Through Procedural Code

Permission Statements

Permission Statement Description

GRANT Grants a permission.

REVOKE Revokes a permission. This is the
default state of a new object. A
permission revoked from a user or
role can still be inherited from
other groups or roles to which the
principal is assigned.

grant elevated privileges as a quick fix. You can use a SQL Server login for testing even if your
application is intended to deploy using Windows authentication.

Granting permissions to roles rather than to users simplifies security administration. Permission
sets that are assigned to roles are inherited by all members of the role. It is easier to add or
remove users from a role than it is to recreate separate permission sets for individual users. Roles
can be nested; however, too many levels of nesting can degrade performance. You can also add
users to fixed database roles to simplify assigning permissions.

You can grant permissions at the schema level. Users automatically inherit permissions on all new
objects created in the schema; you do not need to grant permissions as new objects are created.

Encapsulating data access through modules such as stored procedures and user-defined functions
provides an additional layer of protection around your application. You can prevent users from
directly interacting with database objects by granting permissions only to stored procedures or
functions while denying permissions to underlying objects such as tables. SQL Server achieves this
by ownership chaining.

The three Transact-SQL permission statements are described in the following table.



1/21/2018 Authorization and Permissions in SQL Server | Microsoft Docs

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/authorization-and-permissions-in-sql-server 3/4

Permission Statement Description

DENY DENY revokes a permission so that
it cannot be inherited. DENY takes
precedence over all permissions,
except DENY does not apply to
object owners or members of 
sysadmin . If you DENY

permissions on an object to the 
public  role it is denied to all

users and roles except for object
owners and  sysadmin  members.

Ownership Chains

Procedural Code and Ownership Chaining

The GRANT statement can assign permissions to a group or role that can be inherited by
database users. However, the DENY statement takes precedence over all other permission
statements. Therefore, a user who has been denied a permission cannot inherit it from
another role.

Note

Members of the  sysadmin  fixed server role and object owners cannot be denied
permissions.

SQL Server ensures that only principals that have been granted permission can access objects.
When multiple database objects access each other, the sequence is known as a chain. When SQL
Server is traversing the links in the chain, it evaluates permissions differently than it would if it were
accessing each item separately. When an object is accessed through a chain, SQL Server first
compares the object's owner to the owner of the calling object (the previous link in the chain). If
both objects have the same owner, permissions on the referenced object are not checked.
Whenever an object accesses another object that has a different owner, the ownership chain is
broken and SQL Server must check the caller's security context.

Suppose that a user is granted execute permissions on a stored procedure that selects data from a
table. If the stored procedure and the table have the same owner, the user doesn't need to be
granted any permissions on the table and can even be denied permissions. However, if the stored
procedure and the table have different owners, SQL Server must check the user's permissions on
the table before allowing access to the data.



1/21/2018 Authorization and Permissions in SQL Server | Microsoft Docs

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/authorization-and-permissions-in-sql-server 4/4

External Resources

Resource Description

Permissions in SQL Server Books
Online

Contains topics describing
permissions hierarchy, catalog
views, and permissions of fixed
server and database roles.

See Also

Note

Ownership chaining does not apply in the case of dynamic SQL statements. To call a
procedure that executes an SQL statement, the caller must be granted permissions on the
underlying tables, leaving your application vulnerable to SQL Injection attack. SQL Server
provides new mechanisms, such as impersonation and signing modules with certificates, that
do not require granting permissions on the underlying tables. These can also be used with
CLR stored procedures.

For more information, see the following resources.

Securing ADO.NET Applications
 Application Security Scenarios in SQL Server

 Authentication in SQL Server
 Server and Database Roles in SQL Server

 Ownership and User-Schema Separation in SQL Server
 ADO.NET Managed Providers and DataSet Developer Center

http://msdn.microsoft.com/library/ms191291.aspx
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/securing-ado-net-applications
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/application-security-scenarios-in-sql-server
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/authentication-in-sql-server
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/server-and-database-roles-in-sql-server
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/ownership-and-user-schema-separation-in-sql-server
http://go.microsoft.com/fwlink/?LinkId=217917

